

CCIPC - Data Sheet

Prepared by:	P. Tosi Atro Tos	Date:	10/02/2015
Verified by:	W. Errico Una		10/02/2015
Approved by:	F. Bigongiari (Project Manager)		10/02/2015

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Change Document Record

Docu	ment title: CC	CIPC - Data She	eet	
Issue	Date	Total pages	Modified pages	Notes
1	25/05/2010	21	All	First issue
			11	Added system frequency parameters in Tab.5-1
			15	Added Generic I/O interface description
			22	Added AMBA interface description (Tab.6-2)
2	16/07/2010	26	21	Modified CCIPC IRQ and error handling paragraph (§9.2)
			40	Added description of system clock configuration in §5.1
			10	In §4.1added and update: Modified Tab.4-1 Added Tab 4-2 and Tab 4-3
			10	In §4 1 added Tab 4-5
			13	Modified §4 5
			16	Modified §5.4
			17	In §7.2 :
2.1	19/11/2010	57		 Modified Generic I/O interface description (Tab. 7-2); Added Fig. 7-2, Fig. 6-2 and Fig. 7-4
			32	In §10: Modified Tab.9-3, Tab.9-4, Tab.9-5, Tab.9-6, Tab.9-7, Tab.9-8, Tab.9-9, Tab.9-10 and Tab.9-11
				Added Tab.9-12
			41	Added §10
			9	Added §4.1.1. about CCIPC SW requirement
			14	Modified introduction on SC
			10	Changed Capacia I/O pariphany depariation in Tab 6.1
			20 21	Inverted Q and D signals in Fig.6-3, Fig.6-4, Fig.6-5, Fig.6-6, Fig.6-7
3	20/12/2010	60	26	Modified Simulation environment description in §7
			30	Added a new command to execute CCIPC test procedures in §7.3
			37	Change default value of "HurriCANe Configuration register" in Tab.9-3 and of BPR value in Tab.9-6
			44	Added compilation commad for edac_rom.c file in §10
			44	Modified all CCIPC GUI screenshots in §10
			19	Modified Synchronous Window length and Consumer Heartbeat time description in Tab. 6-1.
			20	Added §6.1.1 - Node-ID Acquisition and Modification
4	25/02/2011	64	21	Modified §6.1.2 and §6.1.3
			22	Modified §6.2.2. Added information on Inhibit time and event time for asynchronous TPDO.
			27	Added §7.1.1- IRQ & External Trigger.

Document title: CCIPC - Data Sheet				
Issue	Date	Total pages	Modified pages	Notes
			28	Modified Fig. 7-5
			28	Added §7.1.2 to explain CAN bus selection interface.
			30	Modified Fig. 7-6
			32	Modified Fig. 7-8
			32	in §7.4 added additional AMBA Bus information.
			39	In §8.2 added information on CAN MST interface for simulation environment.
			42	In §9 added information on constraint file used during synthesis process.
			48	In §10.2 added information on SDO abort code supported by CCIPC
			53	In §10.2 added information on how to manage IRQ lines.
			27	In §7.1.1 the relationship between IRQ[] peripheral signals and IRQ condition has been specified.
			28	In §7.1.2 added information on BusSel signal functionality
			28	Modified Fig. 7-5 of Generic I/O interface.
			29	Added Tab. 7-3 information on HOST interface signals
				needed to connect arbiter module
			30	Modified Fig. 7-6 of Direct Interface.
_			32	Modified Fig. 7-8 of AMBA interface.
5	24/03/2011	68	37	In §8.1 added information on simulation bit-rate and system frequency.
			49	Added IRQ reference column in
			52	Added information on how to enable or disable CCIPC EDAC protection.
			58	Added information on CCIPC configuration steps in §11.
			61	In §11.3 added naming convention information.
			65	Replaced Fig. 11-6 with correct definition of COB-ID Synch Object.
			15	Modified Tab. 5-1 with new Source file
			19	Added "SDO Type" item in Tab. 6-1
			20	Added information on "Node count" and "SDO type" items.
			27	In §7.1.1 (Generic Interface) : Added more information on IRQ[0] line .
	00/04/004	70		Removed description of Host trigger interface.
6	22/04/2011	70	28	Modified Fig. 7-5. Removed Host trigger interface.
			29	in §7.3 (Direct Interface) added description of Host trigger interface
			32	Modified Fig. 7-8. Removed Host trigger interface
			35	In §8 added simulation instruction to point correct CCIPC FSM file
			40	Modified Tab. 8-3 according to new Configuration area addressing

Docu	ment title: CC	CIPC - Data She	eet	
Issue	Date	Total pages	Modified pages	Notes
			45	In Tab. 10-2 removed TASI SCET entry
			47	In §10.2 modified information on how to manage IRQ
				lines according to new IRQ interface
			47	Update Tab. 10-3 according to new Configuration
			47	Area delinition
			47	Area definition
			49	Update Tab. 10-10 and Tab. 10-12 according to new IRQ register definition
			51	Added explanation of new RPDO and TPDO IRQ management. Added Tab. 10-14, Tab. 10-15, Tab. 10-16, Tab. 10-17, Tab. 10-18, Tab. 10-19, Tab. 10-20 and Tab. 10-21.
			53	Added explanation of new TPDO external trigger register interface. Added Tab. 10-23 and Tab. 10-24
			59	In §11.2 modified VHDL constants list. Added: GENERICH_TECH,SDO_FUNCTION, NODE_COUNT,PDO_IRQCNT, PDOIRQ_IDXand MAX_SRPDO values.
			61	Modified Fig. 11-1 according to new CCIPC GUI interface. Added information on SDO type selection.
			12	Added §4 - CANOPEN OVERVIEW
			15	Modified SRC file list in Tab. 5 1
			20	In §6.1.1 modified statement on resetting core procedure.
			21	Modified Fig. 6-1 – Acquisition of Node-Id
			24	Modified §7 - CCIPC interface
			27	Modified §7.1.1. Bus switch event assigned to IRQ line
			27	In §7 modified Fig. 7-4 - Read-Modify.
			28	In §7.2 Changed "D" with "Q" in "At the next clock cycle the RD, WR and A and Q(during write cycle) are stable at the interface" sentence.
7	23/09/2011	83	28	In §7.1.2 changed "implements" with "includes" in "CCIPC includes a single CAN controller capable to handle two physical busses" sentence.
			32	Modified Tab. 7-6
			37	In §8.1 modified "Stimuli" file description
			39	In Tab. 8-1 modified BLKIDL, BLKDL, BIkIUL and BIkUL definitions.
			40	Modified ID field in Tab. 8-2
			40	Added R_CF_ST_ADDR0 constant definition in Tab. 8 3
			41	Modified Test procedures in §8.3
			48	Changed HOSI Access type of SDO multiplexor field in Tab. 10-3
			48	In §10.2 added information on: MsgIn Queue and Synch Fifo full conditions and T/RPDO generic error

CCIPC - Data Sheet

Document title: CCIPC - Data Sheet				
Issue	Date	Total pages	Modified pages	Notes
				conditions.
			49	Changed "Bus selection" nomenclature to "Current
			49	Changed BPR default value from 0 to 1 in Tab. 10-6
			50	Added bus switch flag signal in IRO status register
			00	(Tab. 10-10) and IrQ mask-clear register (Tab. 10-12)
			50	Added indication on RPDO and TPDO generic error in
			52	Modified TPX IPO and SVNCH IPO provide codes in
			53	§10.2
			54	Added SDO download and Upload flag indication on Multiplexor register (Tab. 10-25)
			76	Added §12 - CCIPC RESOURCE O
			78	Added §13 - CCIPC TIMING CHARACTERISTICS
			82	Added §14 – CCIPC Portability
			15	Modified file list in Tab. 5-1
			15	Modified file list in Tab. 5-2
0	29/11/2011	02	16	Modified file list in Tab. 5-3
0	20/11/2011	03	47	In Tab. 10-3 modified Cfg Address for Device Type
				and Error register items.
			52	Added explanation of Hamming code used for EDAC
			29	Corrected Tab. 7 3 – Generic I/O signals
			30	Corrected Tab. 7 4 – Direct interface signals
			33	Corrected Tab. 7 6 – AHB signals
			39	In Tab. 8-1 modified BLKDL instruction definition. Added \$cflag option.
			47	Modified SDO and HOSI access type in Tab. 10-3
9	20/07/2012	87	52	In §10.2 modified EDAC algorithm.
			55	In §10.2 added information on MsgIn Queue full (incoming message queue full) condition management
			63	Updated Fig. 11-3
			75	Update §12 with new resource occupation information
			77	In §13 updated timing information and added §13.1 with more details on TPDO service.
			15	Adjusted file name in Tab. 5-1.
				Adjusted file name in Tab. 5-2
			21	Added Tab. 6-3 to explain the association between
			45	In \$10 added information on CCIPC Initialization Area
			43	In Tab. 10.3 modified access type of Ctoggle entry to
10	03/08/2012	87	77	Read and clean. A write access allows cleaning register value
			50	Added Tab. 10-11 reporting Synch FIFO size information
			77	In §13, modified explanation of possible Heartbeat Consumer timing mismatch.
			84	Corrected timing values on Tab. 13-5

CCIPC - Data Sheet

Document title: CCIPC - Data She			eet	
Issue	Date	Total pages	Modified pages	Notes
			85	Corrected timing values on Tab. 13-6
			All	In all document replaced Actel reference with Microsemi.
			13	In §4 explained with more detail the CANopen features supported by CCIPC.
			21	In §5.1 highlighted that SW requirement refers to the minimum tested.
			23	In §5.2 added Fig. 5-2 adding more details of SRC files.
			24	Added §5.2.1 with a detailed description of Libraries directory. A description of RAM model characteristics has been included.
			25	Incorporate previous TESTBENCH directory section in §5.2.1.
			25	Renamed §5.2.2. Added also HurriCANe file list.
			26	Modified §5.4 about Synthesis script directory.
			27	Modified §5.5 about Fitting script directory
			30	Added §6.1.4.1. – "SDO Implementation: CCIPC FSMs" reporting additional information about CCIPC FSMs implemented.
11	31/10/2012	140	32	Modified §7: - Included Memory interface description in §7.1.1, - Added Configuration Area Description in §7.1.2, - Included in a §7.2 description of all 3 Host interfaces; - Added §7.1.6 with a simple description of Reset distribution inside CCIPC.
			36	Moved previous §6.1.1 "Node-ID Acquisition and Modification" to §7.1.4
			41	In §7.2.3 added information on supported AMBA features for both CCIPC Master and Slave interfaces.
			44	In §8 modified instructions for CCIPC simulations and test execution.
			49	Added §8.3 describing simulation Log file.
			50	Split §8.4 in two paragraphs: 8.4.1 - CCIPC Default Tests and 8.4.2 - User Defined Tests.
			54	Added §9.2 with instructions to synthetize and fit CCIPC for Xilinx.
			56	§10 has been completely reviewed.
			95	In §13 added some information on CCIPC tasks scheduling.
			95	In §13 replaced "Segment Reply" with "Block Reply" in SDO Block Download table.
			104	In §14.3 inserted additional information on EDAC feature implemented in CCIPC.
			15	In §4.1 added that CCIPC is a SYNC consumer
12	04/12/2012	109	17	In §4.5.3 substituted Ctoggle with Ntoggle.
			18	Revisited §4.6.1.1.1.

CCIPC - Data Sheet

Document title: CCIPC - Data Sheet Modified				
Issue	Date	Total pages	Modified pages	Notes
			18	Revisited §4.6.1.2.1
			22	Modified Tab. 4-11
			22	Modified Tab. 4-12
			23	Modified Tab. 4-13
			33	In §6.1.4.1 removed warning on FSM implementation.
			37	In §7.1.1 changed CCIPC endianness from big to little
			39	In Fig. 7-6 changed Q[n] with D[n]
			39	In §7.1.4 corrected reference to Tab. 7-5 and Fig. 7-7
			56	In §9.1.1 removed warning on FSM implementation.
			58	In §9.2.1 removed warning on FSM implementation.
				In §10.1 changed host access type of: - Error Register;
			60	- msgin_full bit of HurriCANe & CCIPC status register;
				- SDO multiplexor
				In §13 modified parameters name of SDO Download
			103	and Upload Block to match the standard CANopen
				nomenclature.
			10	Modified Synchronous Window Length error in
			10	§4.6.1.1.1
			18	Replaced TPDO with RPDO in §4.6.1.2.1
			22	In §4.6.2.2 included additional information on SDO
				segmented transfer.
			22	In §4.6.2.3 included additional information on SDO block transfer.
40	04/00/0040	400	40	In §7.1.6 added information about CCIPC reset.
13	21/03/2013	109	66	Replaced correct address of Ctoggle register.
			66	Replaced correct address of ID Base register.
			67	Replaced correct address of ID Mask register.
			75	Modified access type of "index" field in SDO
			75	multiplexor register.
			89	Modified Fig. 11-3 - Node Id setting
			101	Added Tab. 12-1 with information of CCIPC internal RAM modules occupation.
			18	In §4.6.1.2.1 modified explanation of RPDO
				In \$4.6.2.3 removed any references of SDO
14	20/06/2013	109	22	Segmented and modified note on Tab 4-12
			28	In §5.3 removed reference about ADDON TB tests
			54	In §8.4.1 removed reference about ADDON_TB tests
. –				In §4.6.1.2.1 modified explanation of RPDO
15	23/07/2013	109	18	synchronous error detection.
			70	In §10.1 added information on IRQ masking.
10	00/05/004 4	140	74	In §10.1 added explanation of serr_mask and
16	08/05/2014	110	/4	derr_mask field of EDAC error register.
			77	In §10.1 added Tab. 10-7.
17	10/02/2015	113	35	In §7 modified figures Fig. 7-2, Fig. 7-3, Fig. 7-4, Fig.

CCIPC - Data Sheet

Docu	ment title: C	CIPC - Data Sh	eet	
Issue	Date	Total pages	Modified pages	Notes
				7-5, Fig. 7-6, Fig. 7-7 and Fig. 7-10.
			81	In §10.3.1 added Tab. 10-10 which shows the Shared Memory occupation of Mapping Parameter structure.
			82	In §10.3.2 added Tab. 10-11 and Fig. 10-1 to illustrate the mapping of Application Objects in the Shared memory.

CCIPC - Data Sheet

Table of Contents

1	INTR	ODUCTION	12
2	DOC	UMENTS	13
	2.1	Reference Documents	13
3	LIST	OF ACRONYMS AND ABBREVIATIONS	14
4	CAN	OPEN OVERVIEW	15
	4.1	Communication Model	15
	4.2	Object Dictionary	15
	4.3	Data Type	16
	4.4	Object Type	17
	4.5 4.5.1 4.5.2 4.5.3	Network Management Objects Module Control Services Bootup Service Error Control Service and Bus Redundancy	17 17 17 17
	4.6 4.6.1 4.6 4.6 4.6 4.6 4.6	Communication Objects. Process Data Object (PDO). 5.1.1 Transmit PDO. 4.6.1.1 Synchronous 4.6.1.2 Asynchronous 5.1.2 Receive PDO. 4.6.1.2.1 Synchronous 4.6.1.2.2 Asynchronous Service Data Object (SDO) 5.2.1 CCIPC – Expedited Configuration 5.2.2 CCIPC – Segmented Configuration 5.2.3 CCIPC – Block Configuration	 17 17 18 18 18 18 19 19 21 22 22 22
5	IP CO	DRE DATABASE	24
	5.1 5.2 5.2.1 5.2.1 5.2.2	Software Requirement SRC Directory LIBRARIES Directory TESTBENCH Directory CAN_CORE Directory	24 25 27 27 28
	5.3	SIM Script Directory	28
	5.4	SYN Script Directory	29
	5.5	FIT Script Directory	30
	5.6	CONFIG File Directory	30
	5.7	CONFIG Tool Directory	30
6	CCIF	C CONFIGURATION	31
	6.1	CCIPC Set-up and Configuration	31

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

	6.1.1 6.1.2 6.1.3 6.1.4 6.1 6.1.5 6.2	Synchronous Window Length Consumer Heartbeat Time Producer Heartbeat Time SDO Server Configuration 1.4.1 SDO Implementation: CCIPC FSMs Bus Manager Parameters Communication Objects Configuration.	32 32 32 32 33 33 33 33
	6.2.1 6.2.2	Transmit PDO	34 34 24
7	0.3 INITE		25
1			. 35
	7.1 7.1.1	Memory Interface	36
	7.1.2	Configuration Area Interface	. 38
	7.1.3	IRQ & External Trigger	. 39
	7.1.5	CAN Bus Selection	40
	7.1.6	Reset Distribution	40
	7.2	Host Interfaces	41
	7.2.1	Generic Interface	41
	7.2.2	AMBA Bus Interface	44
8	SIMU	ILATION ENVIRONMENT	47
	8.1	CCIPC Core Test-Bench	49
	8.2	Input Stimuli Format	50
	8.3	Output Test Log File	52
	8.4	Test Procedures Simulation	54
	8.4.1	CCIPC Default Tests	54
	8.4.2	User Defined Tests	55
9	SYN	THESIS AND FITTING SCRIPTS	. 56
	9.1	Microsemi (RT)AX FPGA	56
	9.1.1 9.1.2	Synthesis Fitting	. 56
	0.2	Yiliny EPGA	58
	9.2.1	Synthesis	. 58
	9.2.2	Fitting	59
10) CCIF	PC MEMORY MAPPING	60
	10.1	Configuration & Status Area	60
	10.1.	1 IRQ Handling	77
	10.2	On-board Area	79
	10.2. 10.2	2 AOs Addressina Pointers	. 79 . 80
	10 2	Shared Memory Area	80
	10.3.	1 PDO Mapping Parameters	. 81

CCIPC - Data Sheet

SITAE	L

10	0.3.2 Application Objects Area	82
11 CC	ONFIGURATION TOOL	
11.1	ROM IMAGE FILE	
11.2	2 VHDL Configuration File	
11.3	3 CCIPC GUI	
11.4	4 CCIPC Set Up Window	88
11.5	5 Configuration Object Window	
11.6	S Application Object	
11.7	7 Communication Object	
12 CC	CIPC RESOURCE OCCUPATION	101
13 CC	CIPC TIMING CHARACTERISTICS	103
13 CC 13.1	CIPC TIMING CHARACTERISTICS TPDO Numerical Example	103 106
13 CC 13.1 13	CIPC TIMING CHARACTERISTICS TPDO Numerical Example 3.1.1 CCIPC with 32 Node	103 106 107
13 CC 13.1 13 13	CIPC TIMING CHARACTERISTICS TPDO Numerical Example 3.1.1 CCIPC with 32 Node 3.1.2 CCIPC with 16 Node	
13 CC 13.1 13 13 13	CIPC TIMING CHARACTERISTICS TPDO Numerical Example 3.1.1 CCIPC with 32 Node 3.1.2 CCIPC with 16 Node 3.1.3 CCIPC with 8 Node	 103 106 107 108 108
13 CC 13.1 13 13 13 13	CIPC TIMING CHARACTERISTICS	 103 106 107 108 108 109
13 CC 13.1 13 13 13 13 13 13	CIPC TIMING CHARACTERISTICS	103 106 107 108 108 108 109 110
13 CC 13.1 13 13 13 13 13 13 13	CIPC TIMING CHARACTERISTICS. TPDO Numerical Example	103 106 107 108 108 108 109 110 110
13 CC 13.1 13 13 13 13 13 13 13 13 13 13 13 13 13 14 CC	CIPC TIMING CHARACTERISTICS	103 106 107 108 108 108 109 110 110 112
13 CC 13.1 13 13 13 13 13 13 14 CC 14.1	CIPC TIMING CHARACTERISTICS	103 106 107 108 108 108 109 110 110 110 112 112
13 CO 13.1 13 13 13 13 13 13 13 14 CO 14.1 14.2	CIPC TIMING CHARACTERISTICS	103 106 107 108 108 108 109 110 110 110 112 112 112

1 INTRODUCTION

This document acts as CAN Controller IP Core data sheet and toolset user manual. The Core features, its development environment and the foreseen configuration options are here described. A quick start approach to CCIPC should pass through the following steps:

- 1) Set-up the CCIPC database inserting HurriCANe core (see §5.2.2). The IP Core Database is presented in §4 with a detailed description its directories structure and main files
- 2) Run standard configuration tests. The simulation environment set-up is presented in §8.3, with explicit information about the files involved in the simulation process.
- 3) Generate custom configuration defining interface, main parameters and Object Dictionary (OD). The parameters functions are described in §6. In §7 the different options for the core host interface are presented. The CCIPC graphical configuration tool is described in §11 where the user is guided step-by-step in the object dictionary definition.
- 4) Simulate application specific core instance the explanation how to customise the simulation environment and the compiler tool are provided in §8.
- 5) Synthetize and Fit application specific configuration. Section §9 provide users with basic instructions for synthetizing and fitting of the CCIPC core instance in the Microsemi Axcelerator technology.

CCIPC area occupation and operating frequency for different CCIPC configuration and FPGA technologies are reported in §12.

In §13 an estimation of elaboration time of the main CANopen features is reported.

A brief description of CCIPC portability is illustrated §14

2 DOCUMENTS

2.1 Reference Documents

[RD 1] CiA Draft Standard 301 Version 4.02 [RD 2] CiA Draft Standard 306 Version 1.3

3 LIST OF ACRONYMS AND ABBREVIATIONS

Abbreviation	Meaning
AHB	Advanced High-performance Bus
AMBA	Advanced Microcontroller Bus Architecture
AO	Application Object
CAN	Controller Area Network
CAN MST	CAN Master
CCIPC	CANOPEN Controller IP core
CiA	CAN In Automation
COB-ID	Communication Object Identifier
DCF	Device Configuration File
EDAC	Error Detection And Correction
EDS	Electronic Data Sheet
FPGA	Field Programmable Gate Array
FSM	Finite State Machine
GUI	Graphical User Interface
HB	Heartbeat
HW	Hardware
IRQ	Interrupt Request
NMT	Network Management
OD	Object Dictionary
PDO	Process Data Object
RAM	Random Access Memory
ROM	Read Only Memory
RPDO	Receive PDO
SDO	Service Data Object
SW	Software
SYNC	Synchronization Object
TPDO	Transmit PDO
U8	Unsigned 8
U16	Unsigned 16
U32	Unsigned 32
UUT	Unit Under Test
VHDL	VHSIC (Very High Speed Integrated Circuit) HW Description Language

4 CANOPEN OVERVIEW

In this paragraph, an overview of CANopen services supported by the CANopen Controller IP Core (CCIPC) core is provided.

The CAN in Automation (CiA) Standard "CANopen Application Layer and Communication Profile" ([RD 1]) is used as reference document for the CANopen standard.

4.1 Communication Model

The CCIPC is designed to act as:

- SLAVE node in a CANopen network, responding to a master request;
- SERVER node for SDO Download and Upload services;
- **PRODUCER** and **CONSUMER** node for PDO and Heartbeat services
- **CONSUMER** of SYNC message;

4.2 **Object Dictionary**

The CCIPC supports the Object Dictionary implementation. A limited set of Object Dictionary entries are supported as shown in next table.

The CCIPC Object Dictionary foresees a dedicated area (entries starting from index 2000h) that defines CCIPC specific parameters and two macro areas (Read-Write and Read-Only) that allows user to define its specific Application Objects.

Index	Sub-Index	Entry Name			
1000h	0h	Device Type			
1001h	0h	Error register			
1005h	0h	COB-ID synch			
1007h	0h	Synchronous Window length			
1016h	0h	Consumer Heartbeat timer			
	1h	Master & Consumer Heartbeat time			
1017h	0h	Producer Heartbeat time			
1018h	0h	Identity object			
	1h	Vendor-ID			
2h Product code					
	3h Revision number				
	4h	Serial Number			
SDO Se	erver Paramet	er			
	0h	Server SDO Parameter			
1200h	1h	COB-ID client-server			
	2h	COB-ID server-client			
RPDO F	Parameter				
1400b	0h	RPDO Communication			
140011 15EEb	1h	COB-ID			
101111	2h	Transmission Type			
1600h	0h	RPDO Mapping			
17FFh	1h – 8h	Mapping Parameter			
TPDO F	Parameter				
1800h	0h	RPDO Communication			
19FFh	1h	COB-ID			

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Index	Sub-Index	Entry Name			
	2h	Transmission Type			
	3h	Inhibit Time			
	4h	Reserved			
	5h	Inhibit Time			
1A00h	0h	TPDO Mapping			
1BFFh	1h – 8h	Mapping Parameter			
CCIPC	Parameter				
	0h				
	1h	Bdefault			
2000h	2h	Ttoggle			
	3h	Ntoggle			
	4h	Ctoggle			
2001	0h	Filler entry			
	0h				
2002h	1h	ID base			
	2h	ID mask			
	0h				
	1h	HurriCANe configuration			
	2h	HurriCANe & CCIPC status			
	3h	CCIPC-SDO error			
	4h	IRQ status			
	5h	IRQ mask-clear			
	6h	RPDO IRQ0			
	7h	RPDO IRQ1			
2003h	8h	RPDO IRQ2			
	9h	RPDO IRQ3			
	Ah	TPDO IRQ0			
	Bh	TPDO IRQ1			
	Ch	TPDO IRQ2			
	Dh	TPDO IRQ3			
	Eh	EDAC error			
	Fh	TPDO Trig			
	10h	SDO multiplexor			
Read-W	Irite Area				
6000h	0h – 254h	User Defined Application Objects			
6FFFh					
Read-O	nly Area				
7000h	0h – 254h	User Defined Application Objects			
7FFFh	h				

Tab. 4-1: CCIPC Object Dictionary Layout.

4.3 Data Type

The CCIPC supports the following types to define the data type of each Application Object:

- Unsigned 8 (U8);
- Unsigned 16 (U16);
- Unsigned 32 (U32).

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

4.4 Object Type

The CCIPC supports the following Object types to define the type of the Application Objects entry:

- Variable (VAR): single value;
- Record: multiple data field object composed by a combination of simple variables;
- Array: multiple data field object composed by a combination of simple variables of the same data type.

Each variable can be defined using only the U8, U16 or U32 data types.

4.5 Network Management Objects

The CCIPC works as slave node in Network Manager service. Through this service a master is in charge of managing the status of each slave in the CAN net.

4.5.1 Module Control Services

The CCIPC supports the following services:

- Start Remote Node: CCIPC enters in OPERATIONAL state;
- Stop Remote Node: CCIPC enters in STOP state;
- Enter Pre-Operational: CCIPC enters in PRE-OPERATIONAL state;
- Reset Node: CCIPC enters RESET APPLICATION state;
- Reset Communication: CCIPC enters RESET COMMUNICATION state.

CCIPC supports a special feature that allows CCIPC to enter directly in OPERATIONAL state at the end of initialization phase when a dedicated flag is active.

4.5.2 Bootup Service

CCIPC supports the Boot-up service signaling to the Master that the initialization phase ended.

4.5.3 Error Control Service and Bus Redundancy

The CCIPC supports the Heartbeat protocol to detect failures in a CAN network. CCIPC is in charge of receiving and transmitting Heartbeat messages.

When CCIPC does not receive the Heartbeat message from the Master node it generates an "Heartbeat event".

This event is used by CCIPC to implement the "Bus Redundancy Management" protocol. Through this protocol CCIPC is able to control two CAN buses (nominal and redundant). CCIPC periphery is furnished with a bus selection flag that, in a multiplexing way, allows defining which is the currently CAN active bus. Two parameters are available to control the redundancy protocol:

- Ttoggle counter
 - Itoggle counter
 - Ntoggle counter

The **Ttoggle** counter defines the maximum number of Heartbeat events causing a bus switch.

The **Ntoggle** counter defines the maximum number of bus toggling before CCIPC stops the redundancy process.

4.6 Communication Objects

4.6.1 Process Data Object (PDO)

The real time data transfer is performed by the "PDO" service. Two kinds of PDO are supported:

- Transmit PDO (TPDO) CCIPC transmits data;
- Receive PDO (RPDO) CCIPC receives data.

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

4.6.1.1 Transmit PDO

The CCIPC supports the Synchronous and Asynchronous transmission modes for TPDO service.

4.6.1.1.1 Synchronous

The transmission of this type of TPDO is associated to the following trigger:

• *Event trigger*: expiration of the specified transmission period associated to the reception of SYNCH message;

The Synchronous TPDO service is controlled by an additional parameter, the Synchronous Window Length that defines a time window within which the synchronous TPDOs have to be sent. If one synchronous TPDO cannot be sent before the synchronous window length expiration, an error is signaled by CCIPC.

4.6.1.1.2 Asynchronous

The transmission of this type of TPDO is associated to the following triggers:

- Event trigger: external host device issues a TPDO transmission request;
- *Timer Driven*: expiration of the transmission period associated to internal timers defined as multiple of milliseconds.

Two-timer parameters can be associated to an Asynchronous TPDO:

- Event Time: its expiration is considered an event that causes the transmission of the TPDO;
- *Inhibit Time*: it defines the minimum interval for TPDO transmission.

The following table shows all the possible TPDO configurations supported by CCIPC. Note that for the Asynchronous TPDO the Event trigger feature is always enabled and it is in charge of the host device to use it or not.

Туре	SWL	Event trigger	Event Time	Inhibit Time	Description		
yes no no no The T S check		no	The TPDO is sent at expiration of synch period and the check on SWL is enabled.				
	no	no	no	no	The TPDO is sent at expiration of synch period		
	no	yes	no	no The TPDO is sent only when external trigger is issued			
	no	yes	no	yes	The TPDO is sent only when external trigger is issued and		
the inhibit period is expired.		the inhibit period is expired.					
	no	yes	yes	no	The TPDO is sent both when external trigger is issued and		
AS					when even timer expires.		
	no	yes	yes	yes	The TPDO is sent both when external trigger is issued or		
					when even timer expires and the inhibit period is exp		
					The event time is reloaded to default value when TPDO		
					transmission is caused by external trigger.		

Tab. 4-2: CCIPC – possible TPDO configurations. S-synchronous, AS-Asynchronous, SWL-Synchronous Window Length.

4.6.1.2 Receive PDO

The CCIPC supports the **Synchronous** and **Asynchronous** elaboration modes for RPDO service. In fact a RPDO message is received in asynchronous way but the CCIPC elaborates the content immediately or not according to the RPDO type.

4.6.1.2.1 Synchronous

The elaboration of this type of RPDO is associated to the reception of the SYNC message.

SI	ΤΛ	EL

When the RPDO is received, CCIPC stores it in a dedicated internal queue and only at reception of the SYNC message it starts the elaboration of the message.

As for synchronous TPDO, also the Synchronous RPDO service is controlled by the Synchronous Window Length parameter that defines a time window within which all the synchronous RPDOs received have to be elaborate. If one of the synchronous RPDOs is not elaborated within the synchronous window length expiration, an error is signaled by CCIPC.

4.6.1.2.2 Asynchronous

The CCIPC starts the elaboration of this type of RPDO immediately after its reception.

4.6.2 Service Data Object (SDO)

The SDO service allows a client to access the Object Dictionary of a server node to read (SDO Upload) or write (SDO Download) specific Object Dictionary entries.

The SDO foresees 3 different type of services:

- *Expedited*: it is used to transfer up to 4 bytes;
- Segmented: it is used to transfer more than 4 bytes as a sequence of segments;
- Block: it is used to transfer more than 4 bytes as a sequence of blocks without CRC feature;

The difference between Segmented and Block services is that Block service allows an higher bus utilization. In fact, segment service foresees that each segment of 7 bytes is transferred in an acknowledged way, while Block service allows transferring up to 127 segments of 7 bytes consecutively. CCIPC supports the SDO Abort service. It is in charge to notify errors if a SDO protocol error is detected and stopping SDO transfer when an SDO abort is received.

The CCIPC is in charge to detect and transmit the following abort codes:

Abort Code (Hex)	Description			
05030000	Toggle bit not alternated			
05040001	Client Server command specifier not valid or unknown			
06010002	Attempt to write a read only object			
06070010	Data type does not match, length of service parameter does not match			
06090011	Subindex does not exist			
05040002	Invalid Block size			
05040003	Invalid Sequence number			
0800000	General Error			

Tab. 4-3: CCIPC Abort condition and test configurations.

The following tables report the SDO access type supported by CCIPC for each Object Dictionary entry:

Index	Sub-Index	Entry Name	Obj Type	SDO access	SDO type
1000h	0h	Device Type	VAR_U32	Ro	Expedited
1001h	0h	Error register	VAR_U8	Ro	Expedited
1005h	0h	COB-ID synch	VAR_U32	Ro	Expedited
1007h	0h	Synchronous Window length	VAR_U32	Ro	Expedited
1016h	0h	Consumer Heartbeat timer	U8	Ro	Expedited
	1h	Master & Consumer Heartbeat time	U32	Rw	Expedited
1017h	0h	Producer Heartbeat time	U16	Rw	Expedited
1018h	0h	Identity object	U8	Ro	Expedited
	1h	Vendor-ID	U32	Ro	Expedited
	2h	Product code	U32	Ro	Expedited
	3h	Revision number	U32	Ro	Expedited
	4h	Serial Number	U32	Ro	Expedited

File name: CAS-CCIPC-DTS-0001.doc

Tab. 4-4: CCIPC - SDO Access: Communication Area.

Index	Sub-Index	Entry Name	Obj Type	SDO access	SDO type
1200h	0h	Server SDO Parameter	U8	Ro	Expedited
	1h	COB-ID client-server	U32	Ro	Expedited
	2h	COB-ID server-client	U32	Ro	Expedited

Tab. 4-5: CCIPC - SDO Access : SDO Server Parameter.

Index	Sub-Index	Entry Name	Obj Type	SDO access	SDO type
1400h 15FFh	0h	RPDO Communication	U8	Ro	Expedited
	1h	COB-ID	U32	Ro	Expedited
	2h	Transmission Type	U8	Ro	Expedited
1600h	0h	RPDO Mapping	U8	Ro	Expedited
17FFh	1h – 8h	Mapping Parameter	U32	Ro	Expedited

Tab. 4-6: CCIPC - SDO Access : RPDO parameters.

Index	Sub-Index	Entry Name	Obj Type	SDO access	SDO type
	0h	RPDO Communication	U8	Ro	Expedited
	1h	COB-ID	U32	Ro	Expedited
1800h	2h	Transmission Type	U8	Ro	Expedited
19FFh	3h	Inhibit Time	U16	Ro	Expedited
	4h	Reserved	U8	Ro	Expedited
	5h	Inhibit Time	U16	Ro	Expedited
1A00h	0h	TPDO Mapping	U8	Ro	Expedited
1BFFh	1h – 8h	Mapping Parameter	U32	Ro	Expedited

Tab. 4-7: CCIPC - SDO Access : TPDO parameters.

Index	Sub-Index	Entry Name	Obj Type	SDO access	SDO type
	0h		U8	Ro	Expedited
	1h	Bdefault	U8	Ro	Expedited
2000h	2h	Ttoggle	U8	Rw	Expedited
	3h	Ntoggle	U8	Rw	Expedited
	4h	Ctoggle	U8	Rc	Expedited
2001	0h	Filler entry	U8		
	0h		U8	Ro	Expedited
2002h	1h	ID base	U8	Ro	Expedited
	2h	ID mask	U8	Ro	Expedited
	0h		U8	Ro	Expedited
	1h	HurriCANe configuration	U32	Ro	Expedited
	2h	HurriCANe & CCIPC status	U32	Ro	Expedited
	3h	CCIPC-SDO error	U32	Ro	Expedited
20026	4h	IRQ status	U32	Ro	Expedited
20030	5h	IRQ mask-clear	U32	Ro	Expedited
	6h	RPDO IRQ0	U32	Ro	Expedited
	7h	RPDO IRQ1	U32	Ro	Expedited
	8h	RPDO IRQ2	U32	Ro	Expedited
	9h	RPDO IRQ3	U32	Ro	Expedited

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 21 of 113

Index	Sub-Index	Entry Name	Obj Type	SDO access	SDO type
	Ah	TPDO IRQ0	U32	Ro	Expedited
	Bh	TPDO IRQ1	U32	Ro	Expedited
	Ch	TPDO IRQ2	U32	Ro	Expedited
	Dh	TPDO IRQ3	U32	Ro	Expedited
	Eh	EDAC error	U32	Ro	Expedited
	Fh	TPDO Trig	U32	Ro	Expedited
	10h	SDO multiplexor	U32	Ro	Expedited

Tab. 4-8: CCIPC - SDO Access : CC	IPC parameters.
-----------------------------------	-----------------

Index	Sub-Index	Entry Name	Obj Type	SDO access	SDO type
	0h	Read-Write Area	U8	Ro	Expedited
6000h	1h – 254h		U8	Rw	Expedited
6FFFh			U16		Segmented
			U32		Block

Tab. 4-9: CCIPC - SDO Access : Application Objects Read-Write Area.

Index	Sub-Index	Entry Name	Obj Type	SDO access	SDO type
	0h	Read-Write Area	U8	Ro	Expedited
7000h	1h – 254h		U8	Ro	Expedited
7FFFh			U16		Segmented
			U32		Block

Tab. 4-10: CCIPC - SDO Access : Application Objects Read-Only Area.

The CCIPC can be configured in 3 different ways according to supported SDO service:

- Expedited: CCIPC supports only SDO Expedited service;
- Segmented: CCIPC supports SDO Expedited and Segmented services;
- Block: CCIPC supports SDO Expedited and Block service.

As illustrated in Tab. 4-9 and Tab. 4-10 the SDO Segmented or Block service can be used only to access the Read-Write or Read-Only areas.

In these areas the user has the possibility to add its specific entries defining them as Array, Variable or Record. Next paragraphs describe how CCIPC replies to an incoming SDO request according to Type of entry addressed and CCIPC configuration selected.

4.6.2.1 CCIPC – Expedited Configuration

Tab. 4-11 illustrates how CCIPC, in its Expedited configuration, replies to a SDO request that addresses an entry defined in the Read-Write or Read-Only area.

SDO reques	st	Variable	Record	Array
Expedited	Download	Accepted	Depends on addressed sub- Index: • 0 – Abort • Other – Accepted	Depends on addressed sub- Index: • 0 – Abort • Other – Accepted
Expedited	Upload	Accepted	Accepted	Depends on addressed sub- Index: • 0 – Accepted • Other – Abort

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

SITAEL

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 22 of 113

Segmented	Download	Abort	Abort	Abort
Segmented	Upload	(*)	(*)	(*)
Plack	Download	Abort	Abort	Abort
DIUCK	Upload	Abort	Abort	Abort
(*) Expedited and Segmented Upload requests have the same structure. It's in charge of CCIPC selecting				
the correct reply. In this case the same principles of Expedited are applied to Segmented Upload.				

Tab. 4-11: CCIPC Expedited : SDO reply behaviour.

4.6.2.2 CCIPC – Segmented Configuration

Tab. 4-12 illustrates how CCIPC, in its Segmented configuration, replies to a SDO request that addresses an entry defined in the Read-Write or Read-Only area. For SDO Segmented, CCIPC is able to transfer data from the pointed sub-index (different from 0) to the end of the array.

SDO reques	t	Variable	Record	Array
	Download	Accepted	Depends on addressed sub- Index: • 0 – Abort • Other – Accepted	Depends on addressed sub- Index: • 0 – Abort • Other – Accepted
Expedited	Upload	Accepted.	Accepted	Accepted. if addressed Sub-index • 0 – Expedited • Other – Segmented
Segmented	Download	Abort	Abort	Depends on addressed sub- Index: • 0 – Abort • Other – Accepted
	Upload	(*)	(*)	(*)
Block	Download	Abort	Abort	Abort
DIOCK	Upload	Abort	Abort	Abort
(*) Expedited and Segmented Upload requests have the same structure. It's in charge of CCIPC selecting the correct reply. In this case the same principles of Expedited are applied to Segmented Upload.				

Tab. 4-12: CCIPC Segmented: SDO reply behaviour.

4.6.2.3 CCIPC – Block Configuration

Tab. 4-13 illustrates how CCIPC, in its Block configuration, replies to a SDO request that addresses an entry defined in the Read-Write or Read-Only area. For SDO Block, CCIPC is able to transfer data from the pointed sub-index (different from 0) to the end of the array.

SDO request		Variable	Record	Array
Expedited	Download	Accepted	Depends on addressed sub- Index: • 0 – Abort	Depends on addressed sub- Index: • 0 – Abort
			 Other – Accepted 	 Other – Accepted

File name: CAS-CCIPC-DTS-0001.doc

		Doc.: CAS-CCIPC-DTS-0001	
	CCIPC - Data Shoot	Issue: 17	
SIVALEL	CCIFC - Data Sileet	Date: 10/02/2015	
		Page: 23 of 113	

SDO reques	t	Variable	Record	Array
	Upload	Accepted.	Accepted	Accepted. if addressed Sub-index • 0 – Expedited • Other – Abort
Segmented	Download	Abort	Abort	Abort
Segmented	Upload	(*)	(*)	(*)
Diask	Download	Abort	Abort	Depends on addressed sub- Index: • 0 – Abort • Other – Accepted
DIOCK	Upload	Abort	Abort	Depends on addressed sub- Index: • 0 – Abort • Other – Accepted
(*) Expedited and Segmented Upload requests have the same structure. Since SDO Segmented is not supported in Block configuration, the CCIPC replies with the same rules of SDO Expedited.				

Tab. 4-13: CCIPC Block: SDO reply behaviour.

5 IP CORE DATABASE

The CCIPC database tree is described. Fig. 5-1:

Fig. 5-1: CCIPC database tree.

It is composed of the following directories:

- SRC It includes all the VHDL files that constitutes the CCIPC architecture
- SIM SCRIPT It includes the scripts and file used to compile the CCIPC core
- SYN SCRIPT It includes files needed to perform the CCIPC synthesis process
- FIT SCRIPT It includes files needed to perform the CCIPC fitting process
- CONFIG FILE it includes the configuration files needed by the CCIPC configuration tool
- **CONFIG TOOL** it includes the executable CCIPC configuration tool

5.1 Software Requirement

The minimum software requirement for Linux kernel and GNU tools versions that has been tested is the following:

- Linux Kernel 2.6.27-11-generic
- ➢ GNU make 3.81
- gcc version 4.3.2

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

- Perl V5.10.0
- perl-Tk V804.028

All the CCIPC SW features has been tested using Ubuntu 8.10 (Linux Kernel 2.6.27-11-generic) and Ubuntu 9.10 (Linux Kernel 2.6.31-22-generic).

5.2 SRC Directory

The **SRC** directory contains the source files that fully describe the CCIPC core in behavioural synthesizable VHDL format, and (into separated subdirectories) the additional files needed to map CCIPC in specific technologies, to compose its simulation environment, and to house the low level CAN controller core.

The CCIPC proper VHDL source files are listed in Tab. 5-1:

Name	Description	
Common Files		
CCIPC_conf.vhd	CCIPC configuration file	
CANopen_pkg.vhd	CANopen constant parameters	
mem_tech.vhd	Definition of memory blocks using specific technology	
EDAC_pack.vhd	Definition of EDAC package	
CCIPC.vhd	CCIPC top level	
CCIPC_interface.vhd	CCIPC CAN interface controller	
ccipc_can.vhd	CCIPC can module. It embodies both CCIPC_interface and CAN	
	controller entities.	
MsgInController.vhd	Queue controller of message received	
MsgOutController.vhd	Queue controller of message to be transmitted	
NetworkManager.vhd	Network Manager	
event_handler.vhd	Event handler	
OD_handler.vhd	CANopen communication protocol handler	
MemRF.vhd	OD_handler service registers mapped on on-chip memory	
CCIPC_FSM_EXP.vhd	FSM implementation of the CANopen protocol services:	
	T/RPDOs, SDO expedited	
CCIPC_FSM_SEG.vhd	FSM implementation of the CANopen protocol services.	
	T/RPDOs, SDO expedited and segmented	
CCIPC_FSM_BLK.vhd	FSM implementation of the CANopen protocol services.	
	T/RPDOs, SDO expedited and block	
CCIPC_FSM_DIRECT.vhd	FSM implementation of the CANopen protocol services for Direct	
	interface:	
	T/RPDOs, SDO expedited	
MemController.vhd	Memory Controller	
Generic I/O interface Files		
CCIPC_GENIO.vhd	Top entity for Generic I/O interface	
Arbiter.vhd	Generic I/O interface memory arbiter	
AMBA interface files		
CCIPC_AHB.vhd	Top entity for AMBA Bus interface	
ahb_arbiter_4m.vhd	AMBA BUS arbiter. It supports up to 4 AHB masters	
ahb_mst.vhd	AMBA BUS master module	
ahb_sslv.vhd	AMBA BUS slave module	
ahb_pkg.vhd	AMBA BUS parameters file	
regfifo.vhd	AMBA master and slave service FIFO	

Name	Description
Direct interface files	
CCIPC_DIRECT.vhd	Top entity for Direct interface
IDX_ROM.vhd	Static Index Table when DIRECT interface is selected
COM_ROM.vhd	Static Communication Parameters table when DIRECT interface is selected
MAP_AO_ITF.vhd	Static Mapping Parameters and Application Objects table when DIRECT interface is selected
Makefile	VHDL Makefile
Makefile.mem	Technology Makefile

Tab. 5-1: CCIPC SRC files.

The following figure illustrates the dependencies between the modules constituting the possible CCIPC configurations.

The green modules define the CCIPC architecture composed of:

- CAN interface: composed by the CAN controller (*can_core*) and its interface manager (*CCIPC_interface*);
- **Messages queues**: they store message received (*MsgIn Controller*) and message to be transmitted (*MsgOut Controller*). The queues are implemented using memory devices (*MsgIn Queue,MsgOut Queue*);
- **Network Manager**: it is the manager of the Network Management Services, controlling the NMT state and performing the Bus Redundancy management (*Network Manager*);
- **Object Dictionary Handler**: composed by an event scheduler (*event_handler*) that controls the engine of the CCIPC (*OD handler*) in order to elaborate the Communication services (RPDO, TPDO, SDO)
- **Memory controller**: it is the module that allows accessing the whole Object Dictionary.

The CCIPC can be configured using three different interfaces to communicate with the Host device:

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

- **Generic I/O** (*CCIPC GENIO*): it is a generic memory-like interface in which an *arbiter* module manages the communication between Host and CCIPC;
- **AMBA** (*CCIPC AHB*): the CCIPC is connected to the AMBA Bus with a Master (*Master AHB*) and Slave interface (*Slave AHB*);
- **Direct** (CCIPC DIRECT): the CCIPC periphery is directly connected to an external device.

5.2.1 LIBRARIES Directory

The LIBRARIES subdirectory contains the files used to adapt the CCIPC to different FPGA families.

Directory	File Name	Description
ACTEL_AX	ax_ram512x8.vhd (not furnished)	RAM 512x8 bit RAM model
ACTEL_PA3	pa3_ram512x8.vhd (not furnished)	RAM 512x8 bit RAM model
XILINX_VIRTEX	virtex_ram_512x8.vhd (not furnished)	RAM 512x8 bit RAM model
TECH_GEN	tech_generic.vhd	RAM 512x8 bit Generic RAM model

Tab. 5-2: CCIPC – FPGA technology files.

Currently the CCIPC supports only the Microsemi Axcelerator and ProAsic3E families and Xilinx Virtex family. User has to generate the correspondent technology memory file. The following characteristics have to be used to generate a supported memory device:

	Axcelerator	ProAsic3E	Virtex
Name	ax_ram512x8	pa3_ram512x8	virtex_ram_512x8
Туре	Single Port RAM	Two Port RAM	Single Port RAM
Write Width	8	8	8
Read Width	8	8	8
Write Depth	512	512	512
Enable Pin	Not available	Not available	Yes
Write Enable	High	High	High
Read Enable	High	High	Not available
Pipeline	No	No	No
Reset	No	No	No
Clock	Single	Single	Single

Fig. 5-3 CCIPC RAM Model characteristics.

The generated file has to be included in the appropriate directory according to the target FPGA family.

5.2.1 **TESTBENCH** Directory

The **TESTBENCH** subdirectory contains the files needed to set up the CCIPC core simulation environment.

The files needed for simulation are reported in the following table:

Name	Description	
CCIPC_tb.vhd	CCIPC Generic I/O interface testbench	
CCIPC_AHBtb.vhd	CCIPC AHB interface testbench	
CCIPC_DIRECTtb.vhd	d CCIPC Direct interface testbench	
parser.vhd	Emulator of CAN master and HOST interface	
EEPROM8b.vhd		
am29f08d.vhd		

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Name	Description
gen_utils.vhd	
conversion.vhd	
SRAM8b.vhd	SRAM memory model
CAN3MB:	AUCAN3_8051 is an hdl model of CAN Controller interface for 8bit
Can.vhd	microcontroller and it's used to emulate a CAN master node.
Interface.vhd	
singleshot_true.vhd	
singleshot_false.vhd	

Tab. 5-3: Testbench source files.

5.2.2 CAN_CORE Directory

The CCIPC core has been designed to embody the HurriCANe Core in its version 5.2.4. The source files are not directly included in the CCIPC database because subjected to different patent restrictions. ESA distributes the HurriCANe_5.2.4 core under its specific license.

To insert the HurriCANe controller in the CCIPC database, the HurriCANe_5.2.4 source files have to be simply copied in the **CAN_CORE** directory.

The list of HurriCANe files is reported below:

- CANCore.vhd;
- CANCoreConfiguration.vhd;
- CANMessageStates.vhd;
- CANRx.vhd;
- CANTx.vhd
- CRCCalc.vhd;
- ErrFrameGen.vhd;
- ErrorCounters.vhd;
- StuffHandler.vhd;
- Synchro.

5.3 SIM Script Directory

The SIM_SCRIPT directory contains all the files that compose the IP core test procedures and the scripts needed to build new input stimuli for CCIPC simulation.

Name	Description
edac_rom.c	C-program to generate simulation ROM file from a ROM image of the OD
CCIPCTestWriter.pl	Perl script to generate stimuli file for the parser module
CCIPC_test.sh	Shell script to perform automatically predefined CCIPC test procedures

Tab. 5-4: Simulation scripts.

For each test procedure, these files are included:

- OD description in standard DCF format
- CCIPC ROM image file (see §11.1 for file content)
- VHDL constants configuration file (see §11.2 for file content)
- Input stimuli in .in format (see §8.2 for file format)
- Expected results file.

The VRP_TB sub-directory includes all the test procedures files and the full list of the CCIPC test procedure is contained in Tab. 5-5.

SI	ΤΛ	Ε	L

Test Name	Description	
TP5113_boot	CCIPC boot-up message test	
TP5123_nmt_s1		
TP5123_nmt_s2		
TP5123_nmt_s3	COPC NMT state transition test	
TP5123_nmt_s4		
TP5133_NMT_filtering	CCIPC NMT state transition vs Communication Objects filtering	
TP5143_hbt	Heartbeat transmission test	
TP5213_asyncRPDO	Asynchronous RPDO test	
TP5223_synchRPDO	Synchronous RPDO test	
TP5313_synchTPDO	Synchronous RPDO test	
TP5323_asynchTPDO	Asynchronous RPDO test	
TP5413_sdo_expedited	SDO expedited test	
TP5423_sdo_dwseg	SDO Download segmented test	
TP5433_sdo_ulseg	SDO Upload segmented test	
TP5443_DW_block	SDO Upload segmented test	
TP5453_UL_block	SDO Upload segmented test	
TP5462_AbortRx	Reception of SDO abort test	
TP5462_ccs		
TP5462_IndexError		
TP5462_ReadOnly		
TP5462_SizeError		
TP5462_toggle	SDO Error Decoding and Transmission of Abort message test	
TP5462_toggle_stimuli.txt		
(auxiliary file for testbench)		
TP5462_blksize_err		
TP5462_seq_err		
TP5513_hbc_tce	Heartbeat reception and Ttoggle expiration test	
TP5523_Ctoggle	Ctoggle expiration and Bus switch test	
TP5613_parallel#1		
TP5623_parallel#2	CCIPC handling of different task simultaneously test	
TP5633_parallel#3		
TP5713_AMBA	AMBA interface test	
TP5813_DIRECT	Direct interface test	

Tab. 5-5: CCIPC test list.

The instructions to run all test procedures are provided in §8.3.

5.4 SYN Script Directory

The SYN_SCRIPT houses the files needed to synthetize the CCIPC.

The directory is furnished with the examples of synthesis scripts for Synplify Synthesizer for Microsemi Axcelerator and ProAsic3E families and for Xilinx Virtex family.

For each family the scripts to synthesise the CCIPC in its Generic I/O , AMBA and Direct interfaces are provided.

Two type of files are included:

- The project (.prj) file holds the reference to all the VHDL source files and includes the technology specific settings.
- The constraint (.sdc) file keeps the system clock and peripheral timing constraints for the CCIPC design.

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

The section §9.1.1 provides the user with a basic procedure for the core synthesis with Synplify Synthesizer Tool for Microsemi (RT)AX and Xilinx Virtex families.

5.5 FIT Script Directory

The FIT_SCRIPT houses the files needed to execute the Place and Route phase.

The directory is furnished with the examples of Microsemi Designer project for Axcelerator and ProAsic3E FPGA families and of Xilinx ISE for Virtex FPGA family.

For each family the scripts to fit the CCIPC in its Generic I/O, AMBA and Direct interfaces are provided. The section §9.1.2 provides the user with a basic procedure for the core synthesis with Synplify Synthesizer Tool for Microsemi (RT)AX and Xilinx Virtex families.

5.6 CONFIG File Directory

The directory contains the files produced by the Configuration tool. The Configurator output files have the following extensions:

- .dfc, .eds: these are the standard CANopen Design Configuration and Electronic Datasheet File
- .txt: it is the ROM image of the Object Dictionary
- .vhd: it is a VHDL file that has to be copied in the SRC directory to substitute the CCIPC_conf.vhd file.

All the DCF, ROM image and VHDL files needed to perform the test listed in Tab. 5-5 are available in VRP_CF sub-directory.

5.7 CONFIG Tool Directory

The directory contains the executable file of the CCIPC Configuration tool (a Perl-Tk script) whose step by step user guide is described in §11.

6 CCIPC CONFIGURATION

This section introduces the CCIPC configuration parameters and explains their functions. The §11 guides the user in the graphical tool utilization to set the parameters values.

CCIPC configuration parameters are linked to the specific Core implementation. All the parameters are related to the CANOpen protocol and they are directly mapped in Object Dictionary.

The CCIPC configuration tool leads the user during the configuration phase of the CCIPC core. The list of items that the user can manage is shown in the table below.

Main group	Item	Description		
	Node-ID	It indicates Node-ID assigned to the CCIPC slave and		
		it is obtained from external port.		
	Node count	It indicates the number of consecutive CANopen node		
		that the core occupies. This option affects the		
		maximum number of PDO supported.		
	System frequency	It indicates the CCIPC working frequency.		
	Bit-Rate	It indicates the CAN interface working bit rate.		
	Host Interface	It indicates the host interface used by the CCIPC.		
	Target Technology	It indicates the reference technology of the CCIPC		
		core.		
CCIPC Set-Up	SDO type	It allows defining supported SDO services		
and configuration	Device Type	It describes the type of device and its functionality.		
	Identity Object	It contains general informations about the device		
	Synchronous Window	If selected, indicates the length of time (unit = us) for		
	length	synchronous PDO.		
	Consumer Heartbeat	It indicates the consumer heartbeat time (unit = ms)		
	time	together with the expected Producer Node-ID		
	Producer Heartbeat	It indicates the producer heartbeat time (ms)		
	time			
	SDO server	It indicates if SDO server is enabled or not		
	Bus Manager	It configures the Bus Manager parameters(Default		
	parameters	Bus, Ttoggle, Ctoggle and Ntoggle)		
	TPDO parameters	It configures TPDO communication and mapping		
Communication Objects configuration		parameters		
	RPDO parameters	It configures RPDO communication and mapping		
		parameters		
Drofile Area	Supported AOs	It allows configuring each single Application Objects		
configuration				
configuration				

Tab. 6-1: List of configurable parameters.

In next paragraphs, a detailed description of each item is reported.

6.1 CCIPC Set-up and Configuration

The first step in the CCIPC configuration phase is to define the general characteristics of the node.

- NodeID This field allows defining the CCIPC Node ID (Assigned from dedicated input port)
- **Node count** In this field the number of consecutive CANOpen node occupied by the CCIPC. A maximum of 32 Nodes can be defined.

File name: CAS-CCIPC-DTS-0001.doc

• **System frequency** – This field allows the user to define the CCIPC working frequency. The accepted values are in the range from 10MHz to 16 MHz.

Bit-Rate - It allows selecting the working bit-rate of the CAN interface:

- 1 Mbps
- 500 Kbps
- 250 Kbps
- 125 Kbps

The tool calculates the BPR,PS1,PS2 and RSJ values according to the system frequency value. The user is in charge of verifying and, eventually, modifying these values.

• **Host interface** – the CCIPC interface towards the Host interface can be selected. Three options are defined:

- Generic I/O
 - Direct

AMBA Bus

The choice between the three options has a direct impact on the CCIPC configuration, in particular on Object Dictionary implementation. Using a direct interface the OD structure is fully implemented exploiting internal FPGA resources, limiting the core communication capabilities. The other two options, using an external memory device to implement part of the OD, allows saving more resources to store Application Objects. (see §10 for more detail on CCIPC memory organization).

• **Target technology** – the target technology for the CCIPC implementation can be selected. Four options are defined:

- Microsemi Axcelerator
- Microsemi ProAsic
- Xilinx Virtex
- Generic Technology

The user has to select the SDO services supported by CCIPC:

SDO Type – Three options are defined:

- Expedited: only SDO expedited;
- Segmented: Expedited and Segmented SDO;
- Block: Expedited and Block SDO;

6.1.1 Synchronous Window Length

Using the dedicated field is possible to enable or disable the CCIPC synchronous window length feature. If enabled, a value different from zero has to be assigned. The synchronous window length time has a granularity of microseconds.

6.1.2 Consumer Heartbeat Time

This field allows specifying the expected Heartbeat cycle time, expressed in millisecond granularity, and the Node-ID of the expected Heartbeat producer.

6.1.3 Producer Heartbeat Time

This field allows specifying the cycle time of the heartbeat object, expressed with millisecond granularity.

6.1.4 SDO Server Configuration

The CCIPC implements a SDO server features. The only parameters that define an SDO server are:

- COB-ID client -> server
- COB-ID server -> client

Since the CCIPC uses the pre-defined connection set these parameters are automatically generated by the core, depending on CCIPC NodeID assigned.

As explained in §4.6.2 the CCIPC can be configured according to SDO services supported:

- **Expedited**: CCIPC supports only SDO Expedited service;
- Segmented: CCIPC supports SDO Expedited and Segmented services;
- **Block**: CCIPC supports SDO Expedited and Block service.

6.1.4.1 SDO Implementation: CCIPC FSMs

The implementation of these services are performed by the specific Finite State Machine modules that are available in the **SRC** directory.

All the FSMs are executes the following "macro" operations:

- Object Dictionary Initialisation;
- RPDO elaboration;
- TPDO elaboration;
- SDO elaboration.

The FSMs are implemented exploiting only combinational logic and they work as "big multiplexers" returning the execution code according to the input address. Each "macro" operation is implemented as a sequence of Logic, Arithmetic and Memory operations for:

- Registers loading with constants
- Operands moving among different registers
- Arithmetic operations
- Logic compare and bit check
- Read/write memory operations

Next table summarizes the supported serviced for each FSM:

FSM	Initialization	RPDO		TPDO		SDO		
		Synch	Asycnh	Synch	Asycnh	Expedited	Segmented	Block
Expedited	Yes	Yes	Yes	Yes	Yes	Yes	No	No
Segmented	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Block	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Direct	No	Yes	Yes	Yes	Yes	Yes	No	No

Tab. 6-2: CCIPC FSMs vs Implemented CANopen services.

The Direct FSM is a particular FSM used when the CCIPC is configured with Direct Interface. Since in this configuration CCIPC is directly connected to an external device and no external memories are required, all the Object Dictionary parameters (RPDO, TPDO, Application Objects) are implemented exploiting internal FPGA resources, and no initialization phase is needed.

6.1.5 Bus Manager Parameters

The parameters available in this section, together with the Heartbeat Consumer time one, define the CCIPC behaviour to manage the CAN Bus switching between Default and Redundant Bus. In particular the following parameters can be set:

- Ttoggle counter that defines the number of Heartbeat event that can occur before Bus switching;
- **Ntoggle** counter that defines the maximum number of bus switching.

6.2 Communication Objects Configuration

This section of the configuration tool allows defining the CCIPC communication parameters for the Receive and Transmit PDOs services.

•

6.2.1 Receive PDO

The RPDO section allows configuring the RPDO communication and mapping parameters. The CCIPC foresees up to 4 RPDOs for each node occupied by the CCIPC; in this way the user is able to define a number of RPDO included in the range [1:4*NodeID count].

For each RPDO supported, the following parameters are configurable:

- RPDO exist or not
 - RPDO communication type:
 - Synchronous :
 - Asynchronous
- Mapped Application Objects

6.2.2 Transmit PDO

The TPDO section allows configuring the TPDO communication and mapping parameters. The CCIPC foresees up to 4 TPDOs for each node occupied by the CCIPC; in this way the user is able to define a number of TPDO included in the range [1:4*NodeID count].

For each TPDO supported, the following communication parameters are configurable:

- TPDO exist or not
- TPDO communication type:
 - Synchronous transfer type in the range from 1 to 240
 - Asynchronous. In this case other two parameters can be defined:
 - Inhibit timer.
 - Event timer
- Mapped Application Objects

Since CCIPC supports pre-defined connection set, the TPDO COB-ID is automatically programmed inside the CCIPC, depending on the assigned to Node-ID.

The Event Timer is defined as multiple of 1ms in accordance with CANOpen standard.

Even if CANopen standard defines 100us granularity for the inhibit time, the effective time granularity supported by CCIPC is 1ms (Event and Inhibit timers are managed by a unique task only one time every 1ms). The time intervals in the inhibit timer are expressed in 100us time unit, but only values that are integer multiple of 10 (10×100 = 1ms) are legal and exactly managed by CCIPC.

6.3 Application Object Configuration

The application specific data and structures have to be defined as application objects according to the CANOpen protocol and the CCIPC restrictions:

- Only Record, VAR and Array objects are supported
- Only U32, U16 and U8 types are supported

• Implicit Array initialization (DCF Compact Storage option) is still not supported

As additional option the user can distinguish between read-write and read-only objects mapping them in separated areas:

- Read-Write objects: index range 6000h-6FFFh.
- Read-Only objects: index range 7000h-7FFFh.

7 INTERFACE

This section contains information about the CCIPC interface, with a detailed description of its periphery signals and also with an overview of the different interfaces available to allow user to connect to CCIPC.

Fig. 7-1: CANopen slave node.

In order to work as a CANOpen slave node according to the Network Management "Reset Node" and "Reset Communication" services, CCIPC needs to access two external memory area here after simply called ROM and RAM.

• **ROM** area is assigned to store the default values for TPDO/RPDO Communication/Mapping parameters and for Application Objects that have to be loaded after power-on or when the Reset node / Reset Communication requests are received.

Depending on the specific instance this area can be realized with different solutions:

- FPGA internal implementation as a LUT circuit (for example in case of 1-2 node with application objects limited to few hundreds of bytes),
- FPGA RAM macro-cell. Internal A dedicated FPGA memory has to be preloaded before releasing the CCIPC Rst_n signal (e.g. the case of an external microprocessor or a serial link connected to a remote server/memory devices),
- External EEPROM memory. This is a simple (and costly) solution achievable with an external non-volatile memory
- **RAM** area is assigned to keep TPDO and RPDO Mapping Parameters and Application object data. This area is shared between the CCIPC core and the External Device. Depending on the number Node supported and Application Object defined, this area can be implemented exploiting the internal FPGA macro-cells or as part of an external RAM device.

The CCIPC includes also an additional memory area, called **Configuration Area** that collects all the CCIPC configuration and status registers.

CCIPC distinguishes between ROM and RAM areas with the two most significant bit of its address bus according to the following map table Tab. 7-1. The third row is assigned to the CCIPC configuration space that if requested by a SDO service requires an external loop-back on the Core Data and Configuration Ports.

Address A[21:20]	Memory AREA
11	ROM
10	RAM
01	CFG

Tab. 7-1: Memory Areas map.

7.1 CCIPC Periphery Signals

The detailed pin-out of the CCIPC interface is described below:

Signals	Dir	Description
Clk	In	System clock
Rst_n	In	System reset
Nodeld[6:0]	In	CCIPC Node ID
Mask[2:0]	In	CCIPC Mask size
BusSel	Out	Can Bus selection
CanTx	Out	Can tx line
CanRx	In	Can rx line
D[39:0]	In	Data Read Bus
GNT	In	Bus ownership grant
READY	In	Operation done flag
REQ	Out	Bus ownership request
A[21:0]	Out	Address Bus
Q[39:0]	Out	Data write BUS
WR	Out	Data write command
RD	Out	Data read Command
LOCK	Out	Bus Lock request
Cfg_A[19:0]	In	Cfg address
Cfg_D[31:0]	In	Cfg Input Bus
Cfg_cs	In	Cfg select
Cfg_rd	In	Cfg read command
Cfg_wr	In	Cfg write command
Cfg_Q[31:0]	Out	Cfg Output Bus
IRQ[2:0]	Out	Interrupt lines. It includes IRQ error lines
Synch_rx	Out	Strobe to signal synch message reception
rst_aos	Out	Reset Application Objects.
	000	Used only when Direct Interface is selected.

Tab. 7-2: CCIPC periphery.

7.1.1 Memory Interface

The following (Fig. 7-2, Fig. 7-3 and Fig. 7-4) figures show the timing of the CCIPC interface signals during read, write and read-modify operations. The read-modify is needed to keep EDAC consistency when a 32 bit work has to be partially updated for a U8 or U16 write request.

The memory arbiter (*arbiter.vhd*) and AHB master/slave modules (*AHB_mst.vhd*, *AHB_sslv.vhd*) included in the CCIPC data-base work as bridge between CCIPC core and the SRAM/EEPROM components or AMBA AHB bus.

The interface timing charts are here described to allow users to develop new application specific interface for CCIPC.

On the CCIPC interface all the operations are word oriented in order to assure the correct management of the EDAC protection mechanism (1 EDAC byte every 4 data bytes).

The CCIPC works in Little Endian mode: the least significant address contains the least significant byte of a word and the most significant address contains the most significant byte of the word.

Fig. 7-2: Single Read.

Fig. 7-3: Single write.

S	TΛ	EL

Memory operation starts when CCIPC set REQ signal high. At the next clock cycle the RD, WR and A and Q (during write cycle) are stable at the interface.

CCIPC waits for GNT signal high as bus granted feedback. Afterwards data passing takes place only when CCIPC sample the input READY signal high. CCIPC samples the D bus value during read, or assumes the Q bus sampled during write, when READY flag is high in condition of REQ and GNT signal asserted.

CCIPC is also in charge of performing read modify operations when less than four byte have to be written in the memory.

In this case the LOCK signal is used to maintain the control of the memory device after end of read operation. The following write operation is performed without realising the LOCK signal. The timing chart of this operation is shown in Fig. 7-4:

Fig. 7-4: Read-Modify.

7.1.2 Configuration Area Interface

The Configuration Area signals are used to access the CCIPC internal registers. The following timing charts describe the behaviour of these signals during read and write access.

Fig. 7-5: Configuration Area access : Single Read.

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Fig. 7-6: Configuration Area access: Single write.

Accesses on Configuration Area start when Cfg_cs signal is set high and they are one clock cycle long. The Cfg_rd and Cfg_wr signals determine the type of operation. If a read access is requested the read data is immediately available in Cfg_Q signal. If a write access is requested the value of Cfg_D signal is written in the register.

7.1.3 IRQ & External Trigger

The CCIPC interface is able to handle three IRQ lines:

- IRQ[0]: Transfer IRQ (TRX_IRQ)
- IRQ[1]: Synch elaboration completed (SYNCH_IRQ)
- IRQ[2]: Error IRQ (ERR_IRQ)

The TRX_IRQ is used to signal the following conditions:

- reception of Initiate SDO transfer (Segmented and Block only)
- successful elaboration of an SDO transfer
- successful elaboration of asynchronous T/R PDO
- NMT state transition

The SYNCH_IRQ is used to signal the successfully completion of the Synch processing.

The ERR_IRQ line is used to inform the Host that an error has been detected (EDAC error, CAN bus Error, SDO and PDO errors, Bus switch)

These signals have to be cleared by user through dedicated registers described in §10.2

An additional line is used to inform the Host on reception of the Synch message. This bit is active for a single clock cycle.

7.1.4 Node-ID Acquisition and Modification

The CCIPC acquires information on base Node-ID and number of Node supported using a dedicated external signals (NodeID and Mask signals in Tab. 7-2) in the first eight clock cycles after the reset phase. In Tab. 7-3 and Fig. 7-7 the behaviour of this interface is explained.

Name	Description
Nodeld[6:0]	It defines the Base Node-Id assigned to the CCIPC slave
Mask[2:0]	It defines the number of supported Node using the following scheme: "000" – 1 Node "001" – 2 Nodes "010" – 4 Nodes "011" – 8 Nodes "100" – 16 Nodes

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Sľ	т٨	ΕI	
J			

Name	Description
	"101" – 32 Nodes

Tab. 7-3: Node-Id interface description.

Fig. 7-7: Acquisition of Node-ID information.

FPGA samples Node-ID and Mask values between the 7th and 9th clock cycle after reset. Then user can re-assign corresponding pins to different custom functions without affecting the CCIPC functionalities.

CCIPC utilizes this information to perform filtering function of the incoming CANOpen messages and to correctly set the COB-ID of message to be sent. In this way, the Node-ID can be modified without requiring a new FPGA programming, but only a reset procedure in order to allow CCIPC to re-sample the new Node information. Before resetting the core, the user must update the content of the ROM area in order to keep aligned the OD structure with the new Node-ID.

The following table reports the association between the value of "Mask" input port and the "ID MASK" field available in the 2002h entry of the Configuration area.

Node count	Mask	ID Mask
1	0	111 1111
2	1	111 1110
4	2	111 1100
8	3	111 1000
16	4	111 0000
32	5	110 0000

Tab. 7-4: Node-Mask vs ID_mask explanation.

7.1.5 CAN Bus Selection

The CCIPC manages the redundancy algorithm and bus multiplexing, that is: CCIPC includes a single CAN controller capable to handle two physical busses.

The **BusSel** output signal select which of the two CAN busses is logically connected to the core according to the Redundancy algorithm.

Since the BusSel output signal is stable to '0' or to '1' according to the active bus selected by the redundancy manager, it can be used as control signal for the multiplexer, which "selects" the active CAN transceiver.

7.1.6 Reset Distribution

The CCIPC is provided by an active-low asynchronous Power-On Reset (*rst_n*). This reset allows initialize all the sequential logic available in the CCIPC in an asynchronous way.

Together with this global reset, the CCIPC has three additional signals that act as synchronous reset to re-establish the default values of CCIPC internal registers. These signals are associated to following conditions:

• Bus switch : the whole CCIPC core is reset, including the CAN core;

- **Reset Application** : the Application Objects stored in the External Memory area and the registers defined in the Application Objects area are reset;
- **Reset Communication** : the RPDO and TPDO Communication and Mapping parameter and registers defined in the Communication Objects area are reset.

7.2 Host Interfaces

The CCIPC can be connected to an host device through three different interfaces:

- Generic I/O;
- AMBA;
- Direct.

The **Generic I/O** interface is a "memory-like" interface and it requires an auxiliary arbiter module to manage the communication between CCIPC and Host. This arbiter is in charge of sharing the memory bus between Host and CCIPC.

In the **AMBA** interface the CCIPC is connected to an AHB bus through AHB Master and Slave modules. The Master module allows CCIPC to access external memory devices, while the Slave module allows host to access CCIPC registers.

The **Direct** interface is a specific interface used for simple CCIPC implementation that does not require external memories because the whole Object Dictionary is hardwired. In this interface the Application Objects are directly available at system peripheral as input or Output

7.2.1 Generic Interface

The Generic interface architecture is depicted in Fig. 7-8. In order to make the connection of the Core to external device easy the CCIPC core is distributed with an ancillary Arbiter module that manages the sharing of ROM and RAM areas with the Host.

The actual CCIPC Generic interface periphery includes the signals listed in Tab. 7-5

Signals	Dir	Description
Clk	In	System clock
Rst_n	In	System reset
Nodeld[6:0]	In	CCIPC Node ID
Mask[2:0]	In	CCIPC Mask size
BusSel	Out	Can Bus selection
CanTx	Out	Can tx line
CanRx	In	Can rx line
IRQ[2:0]	Out	Interrupt lines. It includes IRQ error lines
Synch_rx	Out	Strobe to signal synch message reception
D[39:0]	In	Host device Write Data BUS
GNT	Out	Host device Bus ownership grant
READY	Out	Host device Operation done flag
REQ	In	Host device Bus ownership request
A[20:0]	In	Host device Address Bus
Q[39:0]	Out	Host device Read Data Bus
WR	In	Host device write command
RD	In	Host device read Command
LOCK	In	Host device Bus Lock request

File name: CAS-CCIPC-DTS-0001.doc

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 42 of 113

Signals	Dir	Description
Mem_Q[7:0]	In	Memory device Read Data Bus
Mem_D[7:0]	Out	Memory device Write Data Bus
out_en	Out	Output enable
Mem_A[19:0]	Out	Memory device Address Bus
Mem_wr_n	Out	Memory device write enable
Mem_rd_n	Out	Memory device read enable
Mem_cs_n	Out	Memory device chip select

The arbiter has been designed to manage two narrow 8 bit memories de/serializing parallel data buses (32 bit + EDAC) for CCIPC and Host Device. EDAC address is obtained with the complement of the Data Word Address to occupy the highest 20% memory locations.

The arbiter code provide the CCIPC user with an example for the management of the CCIPC Generic interface and its higher address bit to generate the three select signals for the RAM, ROM and CFG spaces.

The arbiter code fits a single connection scheme and it may easily modified and more in general used as starting point, to insert CCIPC in its specific application.

Fig. 7-8: Arbiter module connection.

7.2.2 Direct I/O Interface

The Direct Interface is used for very simple CCIPC implementations in which Application Objects could be directly available at system peripheral as input or Output.

The pin-out of the Direct interface top entity is represented in Tab. 7-6:

Signals	Dir	Description
Clk	In	System clock
Rst_n	In	System reset

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 43 of 113

Signals	Dir	Description
Nodeld[6:0]	In	CCIPC Node ID
Mask[2:0]	In	CCIPC Mask size
BusSel	Out	Can Bus selection
CanTx	Out	Can tx line
CanRx	In	Can rx line
IRQ[2:0]	Out	Interrupt lines. It includes IRQ error lines
Synch_rx	Out	Strobe to signal synch message reception
HI_trig	In	External trigger request
HI_trig_val[7:0]	In	Asynchronous triggers
User defined I/O	In/Out	Application Objects mapped in the top level peripheral

Tab. 7-6: Direct Interface peripheral.

An example of Direct I/O interface implementation is shown in Fig. 7-9. In this solution the Application Objects are directly mapped into FPGA flip-flop and pins.

The simplest example of Direct interface may be a GPIO barrier where the pins values and direction controls are mapped into two OD entries and held by FPGA registers. More complex interfaces for Sensors/Actuators (ADC/DAC) may be realized with a further VHDL editing and customisation by the user. In Fig. 7-9 a simple OD composed of 5 flip-flop barriers directly connected to the FPGA pins is presented.

Fig. 7-9: Direct interface.

The HI_trig and HI_trig_val signals are used to implement the TPDO event driven functionality. When HI_trig signal goes high, the CCIPC uses the HI_trig_val as enable to sample the number of the TPDO to be elaborated on the actual CLK rising edge as shown in Fig. 7-10 (in case of Hi_tirg/Hi_trig_val sampled on the FPGA periphery the Tsetup and Thold timings are technology dependent). Tab. 7-7 shows an example of the correspondence between TPDO number and HI_trig_val in a single node CCIPC instantiation.

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

HI_trig_val[10]	TPDO number	OD index
"00"	0	1800h
"01"	1	1801h
"10"	2	1802h
"11"	3	1803h

Tab. 7-7: HI_trig_val definition.

Fig. 7-10: Event driven TPDO timing.

7.2.3 AMBA Bus Interface

The AMBA Bus interface is composed of an AMBA AHB master module used to request read or write operation on the external memory device and an AMBA AHB slave module used to access the CCIPC configuration & status registers. The AHB VHDL models provided with CCIPC are simplified, **not fully standard compliant**, version of the AMBA AHB interfaces.

Fig. 7-11: AMBA bus interface.

The AMBA Bus top entity pin out is reported in Tab. 7-8

Signals	Dir	Description
clk	-	Master clock
rst_n	-	Global reset
NodeID[6:0]	-	Slave Node Id
Mask[2:0]	I	Slave Node Mask
canrx	I	CAN bus Rx line
cantx	0	CAN bus Tx line
BusSel	0	CAN Bus selection

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 45 of 113

Signals	Dir	Description
IRQ[2:0]	0	IRQ lines
synch rx	0	Synch message reception strobe
M HGRANT	In	Arbiter grant
M HREADY	In	Ready flag
M HRESP	In	Transfer response
M_HRDATA[31:0]	In	Read data bus
M_HBUSREQ	Out	Bus request
M_HTRANS[1:0]	Out	Transfer status
M_HWRITE	Out	Operation type
M_HADDR[310]	Out	Address bus
M_HWDATA[31:0]	Out	Write data Bus
M_HSIZE[2:0]	Out	Transfer Data type
M_HBURST[2:0]	Out	Transfer type
M_HLOCK	Out	Transfer Lock
S_HSEL	In	Selection signal
S_HTRANS[10]	In	Transfer status
S_HWRITE	In	Operation type
S_HADDR[200]	In	Address bus
S_HWDATA[310]	In	Write data Bus
S_HRESP[1:0]	Out	Transfer response
S_HREADY	Out	Ready flag
S_HRDATA[310]	Out	Read data Bus
S_HSIZE[2:0]	In	Transfer Data type
S_HBURST[2:0]	In	Transfer type
Generics		
AHB_ROM_OFFSET[31:20]		AMBA Bus ROM area
AHB_ROM_OFFSET[31:20]		AMBA Bus RAM area
AHB_SLV_OFFSET[31:10]		AMBA Bus Configuration Area

Tab. 7-8: AMBA Bus signal.

The selected interfaces works with 32-bit data AHB bus and it is able to manage up to 1 Mbyte of addressable space:

- HWDATA[31:0]
- HRDATA[31:0]
- HADDR[31:0]

The user has to declare the AMBA Bus areas assignment setting the following VHDL generics :

- AHB_ROM_OFFSET[31:20]: 1Mbyte ROM size;
- AHB_RAM_OFFSET[31:20]: 1Mbyte RAM size;
- AHB_SLV_OFFSET[31:10]: 1Kbyte Configuration space.

A simplified version of the AHB interface is supported by CCIPC; Tab. 7-9 lists the granted values of the principal AHB transfer signals.

CCIPC slave interface supports only sequential transfer type (HTRANS="11") of 32 bit size (HSIZE = "010") with incrementing burst (HBURST="001").

CCIPC master interface communicates using only sequential transfer type (HTRANS="11") of 32 bit size (HSIZE = "010") with incrementing burst (HBURST="001") and it not accepts ERROR, RETRY or SPLIT response from the addressed slave.

The M_HLOCK signal is always asserted during transfer to prevent grant de-assertion by arbiter (such condition is not managed by the simplified AHB master). With exception of the Read-Modify operation in

Fig. 7-4 (single write after single read) CCIPC never joins two AHB bus accesses so that it guaranties the insertion of several IDLE cycles between two subsequent locked AHB transactions. The retry or split options are not supported.

AHB signals	Value	Supported
HTRANS[1:0]	00 – IDLE	yes
	01 – BUSY	yes
	10 – NONSEQ	yes
	11 – SEQ	yes
HBURST[2:0]	000 – SINGLE	no
	001 – INCR	yes
	010 – WRAP4	no
	011 – INCR4	no
	010 – WRAP8	no
	011 – INCR8	no
	010 – WRAP16	no
	011 – INCR16	no
HSIZE[2-0]	000 – 8	no
	001 – 16	no
	010 – 32	yes
	011 – 64	no
	010 – 128	no
	011 – 256	no
	010 – 512	no
	011 – 1024	no
HRESP[1:0]	00 – OKAY	yes
	01 – ERROR	no
	10 – RETRY	no
	11 – SPLIT	no

Tab. 7-9: Supported AHB signals value.

8 SIMULATION ENVIRONMENT

This section gives the instructions to set-up and run simulation of the generated CCIPC instance. The simulation set-up procedure is based on the "make" tool and all the tools specific commands are included in the "Makefile" script.

Compilation/analysis and elaboration command for the VHDL files are defined as the VHDL_Com/Elab Variables:

- \$(VHDL_Com) VHDL compilation command
- \$(VHDL_Elab) Elaboration command

```
W = worklib
# - VHDL compilation command
VHDL_Comp = ncvhdl -V93 -WORK
# - elaboration command
VHDL Elab = ncelab -ACCESS +rw
```

The \$(W) variable indicates the output directory for compiled files and tags.

The "setup" command section is assigned to build the tool specific Set-up environment. The following box shows the example of the *Cadence NCSim* simulator, which requires the cds.lib, hdl.var to link "worklib"" and "standard" libraries.

```
setup:
   mkdir ./worklib
   mkdir ./axcelerator
   mkdir ./proasic3e
   mkdir ./xilinxcorelib
   echo 'DEFINE worklib ./worklib'
                                                          > cds.lib
   echo `DEFINE ieee $(CDS ROOT)/tools/inca/files/IEEE' >> cds.lib
   echo 'DEFINE std $(CDS ROOT)/tools/inca/files/STD' >> cds.lib
   echo 'DEFINE synopsys / $(CDS ROOT)/tools/inca/files/SYNOPSYS' >> cds.lib
   echo `DEFINE LIB MAP (.=> worklib, + => worklib )'
                                                                           > hdl.var
   echo 'DEFINE WORK worklib'
                                                                           >> hdl.var
   echo ``timescale 1ns/10ps'
                                                                           > time.v
```

Relationships between the design sub-module is explicitly indicated in the dependency section of the Makefile. For example the notation of the following Box indicates that test-bench VHDL entity CCIPC_tb (Top of simulation hierarchy) depends on the CCIPC.vhd, arbiter.vhd and parser.vhd modules that have to be analysed before it.

```
$(W)/CCIPC_tb.vhmdl : \
   $(W)/CCIPC.vhmdl \
   $(W)/arbiter.vhmdl \
   $(W)/arser.vhmdl
```

When a new design is developed on the CCIPC core these Makefile lines have to be edited to insert the new custom hierarchy.

A specific file (*Makefile.mem*) is included in the Makefile and called during the compilation process defining which technology model has to be applied for CCIPC simulation.

M0 = CCIPC_DB/SRC
M1 = \$(M0)/LIBRARIES
M2 = \$(M1)/TECH_GEN
MPATH = .:\$(M0):\$(M1):\$(M2)


```
$(W)/mem_tech.vhmdl : \
    $(W)/CCIPCconf.vhmdl \
    $(W)/tech generic.vhmdl
```

This Makefile includes only the instruction to compile the Generic technology model. User has to add all the files and their dependencies needed to compile and simulate with the specific technology.

NCSim tool example

The simple steps to set-up a new simulation directory and start simulating CCIPC with the Cadence Ncsim tool are explained in this example.

Start creating the new (YourSIM) simulation directory:

```
>mkdir YourSIM
>cd YourSIM
```

Create a symbolic link to the main directory of CCIPC DataBase directory with CCIPC_DB name:

```
>ln -s /YourPath/CCIPC DB CCIPC DB
```

Create a symbolic link to the to the Makefile included in the SRC directory:

```
>ln -s CCIPC_DB/SRC/Makefile .
>ln -s CCIPC_DB/SRC/Makefile.mem
```

Set-up the simulator path in the \$CDS_ROOT environment variable

>setenv CDS ROOT YOUR SIMULATOR PATH

Launch the set-up command

> make setup

Create the following simulation auxiliary files:

```
> touch dcf.dat
> touch ram.dat
> touch none
> touch stimuli.txt
```

Create the CCIPC_FSM.vhd symbolic link to the correct CCIPC FSM file. For example if SDO ttpe selected is Segmented use the following command:

>ln -s CCIPC DB/SRC/CCIPC FSM SEG.vhd CCIPC FSM.vhd

Now, launch the make command to generate simulation file:

> make

After process elaboration, to simulate the system launch the following command:

```
File name: CAS-CCIPC-DTS-0001.doc
```

Sľ	TΛ	Ε	L

> ncsim CCIPC tb:A -gui &

Other tools

If another tool is utilised, the \$(VHDL_Comp), and \$(VHDL_Elab) variables and the tool Set-up section have to be modified inserting the specific tool commands before proceeding with the compilation process.

8.1 CCIPC Core Test-Bench

A dedicated CCIPC core test-bench has been used to test the CANopen functionalities supported by the CCIPC slave node. All the three interfaces (*Generic I/O*, *AMBA*, *Direct*) and all the four FSMs (*Expedited*, *Segmented*, *Block* and *Direct*) have been tested.

The Fig. 8-1 shows the test-bench architecture implemented when the CCIPC is used with Generic I/O interface.

Fig. 8-1: CCIPC test-bench.

The test-bench module (called *CCIPC_tb*) consists of:

- Parser module: it traduces input stream from DCF or Stimuli files in specific requests on CAN MST or UUT Memory interface emulating the external device. It controls CAN MST and emulates host device in the simulation test
- CAN MST: it implements a CAN controller module based on micro-controller interface that allows exchanging CAN data frame with the UUT. This module works with an input frequency of 16MHz and with 1Mbps of CAN bit rate
- **UUT:** it is the Unit under test and it implements the CCIPC slave node.
- **Memory Arbiter:** it handles sharing of memories between the host device (emulated with static stimuli by parser) and the UUT.
- **RAM:** it is the shared memory module accessible both form CCIPC and the host device.
- **ROM:** it is the memory module that stores the parameters for CCIPC initialisation.

The files used during the test procedure are:

- Stimuli: it contains the test instruction used to drive the CAN-MST interface and also to perform access on RAM module and in the Configuration Area emulating the behaviour of a generic external device interface
- Test Log: this task logs any transition on UUT interface.

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

8.2 Input Stimuli Format

The input stimuli for the CANOpen testbench are built as sequence of CAN messages and memory accesses on its host interface. Both of them are written in the test files using the intuitive format described below in Tab. 8-1.

Function	Description				
can read_msg	CAN master read message received (*)				
can clear_irq	CAN master clear message received IRQ (**)				
can set_irq	CAN master enable message received IRQ (***)				
start_node \$NodeID	CAN Master send a "Enter Operational state" request to \$NodeID				
stop_node \$NodeID	CAN Master send a "Stop Node" request to \$NodeID				
rst_comm \$NodeID	CAN Master send a "Reset Communication" request to \$NodeID				
rst_node \$NodeID	CAN Master send a "Reset Application" request to \$NodeID				
enter_preop \$NodeID	CAN Master send a "Enter Pre-Operational state" request to \$NodeID				
Heartbeat \$NodeID	CAN master send an Heartbeat message.				
	\$NodeID = Master Node ID				
synch	CAN Master send synch object				
rpdo \$COBID \$DATA	CAN Master send RPDO message				
	\$COB-ID – RPDO COB-ID				
	\$DATA – RPDO data [max 8 byte]				
sdo \$ID \$TYPE \$OPT	CAN Master sends SDO request:				
	\$ID – ID of SDO client				
	\$TYPE – SDO type:				
	 InitDL \$expedited \$Index \$subIndex \$data-size 				
	 \$expedited – expedited(1) or segmente(0) 				
	 \$Index – Pointed index 				
	 \$subIndex – pointed sub-index 				
	 \$data-size – data if expedited, size if segmented 				
	 Download \$cont \$data 				
	 \$cont – indicates if it is the last segment 				
	 \$data – stores data objects 				
	 InitUL \$Index \$subIndex 				
	 \$Index – Pointed index 				
	 \$subIndex – pointed sub-index 				
	Upload				
	 BlkIDL \$Index \$subIndex \$size 				
	 \$Index – Pointed index 				
	 \$subIndex – pointed sub-index 				
	 \$size –Block download size 				
	 BlkDL \$cflag \$byte_num 				
	 \$cflag – status of completed bit 				
	 \$byte_num – number of bytes to download 				
	BlkEndDW				
	BlkIUL \$Index \$subIndex \$Blksize				
	 \$Index – Pointed index 				
	 \$subIndex – pointed sub-index 				
	 \$Blksize – Block size 				
	BlkUL \$ackseq \$Blksize				
	 \$ackseq – Sequence number of last segment rx 				
	 \$Blksize – Next Block size 				
	EndBlkUL				

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Function	Description			
	 Abort \$Index \$subIndex \$abort_code 			
	 \$Index – Pointed index 			
	 \$subIndex – pointed sub-index 			
	 \$abort_code – transmitted abort code 			
Waitsegm \$num_seg	CAN master wait for \$num_seq CCIPC SDO messages during the			
	SDO block upload service			
Fillbuf \$ADDRESS \$len	Host device fills \$len consecutive SRAM locations with static data			
	starting from \$Address			
Trig \$TPDO_NUM	Host Device requests the transmission of the \$TPDO_NUM TPDO.			
Waitirq \$IRQ_TYPE	Wait for a specific IRQ.			
	\$IRQ_TYPE:			
	 Canmsg – CAN master waits rx message IRQ 			
	 Error – Host device waits CCIPC error IRQ 			
	 Pdo – Host device waits the end of PDO processing 			
	 Sdo – Host device waits the end of SDO processing 			
	 Synch completed – Host device waits the end of SYNCH 			
	processing			
	 Synch rx – Host device waits synch object reception flag 			
	 Bus switch – Host device waits bus switch flag 			
Dev read \$Address \$len	Host device reads \$len word starting from \$Address			
Dev write \$Address \$data	Host device write data word at specific \$Address			
Waitus \$time	Parser module waits for \$time us before reading next instruction			

Tab. 8-1: Stimuli instruction definition.

(*) The **read_msg** function returns ID, Data and length of CAN message received and it is composed of the following command:

read	CAN	00000020: read RX_ARB_0 register
READ	CAN	00000021: read RX_ARB_1 register
READ	CAN	00000022: read RX_ARB_2 register
READ	CAN	00000023: read RX_ARB_3 register
READ	CAN	00000024: read RX_MSG_0 register
READ	CAN	00000025: read RX_MSG_1 register
READ	CAN	00000026: read RX_MSG_2 register
READ	CAN	00000027: read RX_MSG_3 register
READ	CAN	00000028: read RX_MSG_4 register
READ	CAN	00000029: read RX_MSG_5 register
READ	CAN	0000002A: read RX_MSG_6 register
READ	CAN	000002B: read RX_MSG_7 register
READ	CAN	0000002C: read RX_STATUS register

The table below explains functions of the CAN MST receiver interface registers:

|--|

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 52 of 113

Name	Address(Hex)	Function[7:0]							
RX_ARB_0	0000020	ID[10]	ID[9]	ID[8]	ID[7]	ID[6]	ID[5]	ID[4]	ID[3]
RX_ARB_1	0000021	ID[2]	ID[1]	ID[0]		not	used="00	000"	
RX_ARB_2	0000022				not u	used			
RX_ARB_3	0000023				not u	used			
RX_MSG_0	0000024				1 st Byte	received			
RX_MSG_1	0000025	2 nd Byte received							
RX_MSG_2	0000026	3 rd Byte received							
RX_MSG_3	0000027	4 th Byte received							
RX_MSG_4	0000028	5 th Byte received							
RX_MSG_5	0000029	6 th Byte received							
RX_MSG_6	000002A	7 th Byte received							
RX_MSG_7	0000002B	8 th Byte received							
RX_STATUS	0000002C		not u	used			RX	len	

Tab. 8-2: CAN MST registers of Receiver interface.

(**) The clear_irq function allows clearing CAN message IRQ and it performs the following command: WRITE CAN 0000003 A0: write SETUP_3 register

where SETUP_3 register is defined below:

Name	Address(Hex)	Function[7:0]					
SETUP_3	0000003	RxClear	Rst	IRQclear		TxReq	RSJ

(***) The **can_set** irq function allows enabling CAN IRQ on message reception and it performs the following command:

WRITE CAN 00000000 42: write SETUP_0 register where SETUP_0 register is defined below:

Name	Address(Hex)	Function[7:0]						
SETUP_0	0000000	BPR					RX-irq	

The meaning of the constants utilized in the test files is reported in Tab. 8-3:

Name	Value	Description
R_CF_ST_ADDR0	10035Ch	Pointer to IRQ status register (Index 2000 – SubIndex 0)
R_ST_ADDR	100364h	Pointer to HurriCANe & CCIPC status register (Index 2000 –
		SubIndex 2)
R_IRQ_ST_ADDR	10036Ch	Pointer to IRQ status register (Index 2000 – SubIndex 4)
R_RPDO_IRQ_ADDR0	100374h	Pointer to RPDO IRQ0 register (Index 2000 – SubIndex 6)
R_TPDO_IRQ_ADDR0	100384h	Pointer to TPDO IRQ0 register (Index 2000 – SubIndex 10)
R_IRQ_MK_CL_ADDR	100370h	Pointer to IRQ mask-clear register (Index 2000 – SubIndex 5)
R_SDO_ABORT_ADDR	100368h	Pointer to CCIPC-SDO error (Index 2000 – SubIndex 3)
R_EDAC_ERROR_ADDR	100394h	Pointer to EDAC register (Index 2003 – SubIndex 14)

Tab. 8-3: Test Constant value.

8.3 Output Test Log File

The CCIPC test-bench furnishes a simulation output Log file (*report.txt*) that reports all the traffic recorded on CAN bus and the memory accesses performed by Host interface. The Log file helps user during the

File name: CAS-CCIPC-DTS-0001.doc

		Doc.: CAS-CCIPC-DTS-0001
SITAEL	CCIPC - Data Sheet	Issue: 17
		Date: 10/02/2015
		Page: 53 of 113

debug phase to understand what data are effectively exchanged between CAN Master, HOST and CCIPC.

The following information are reported in the Log File:

- 1. **Time stamp**: time reference expressed in ns;
- 2. Access Type: this field reports the type of operation to be executed:
 - a. **READ**: read operation;
 - b. WRITE: write operation.
- 3. **Peripheral**: this field defines which peripheral performs the operation:
 - a. CAN: CAN Master;
 - b. **EXT**: Host interface;
- 4. Address: Operation Address. The address refers to CAN Master internal registers when Peripheral field is CAN, while it refers to CCIPC Configuration Area or RAM area when Peripheral field is set to EXT;
- 5. Data: Data read or write according to Access type.

An example of Log File, without time stamp information, is reported in next table with a simple description of the operations performed:

Access Type	Per.	Address	Data	Description
WRITE	CAN	00000000	00000042	Write CAN Master SETUP_0 register.
WRITE	CAN	0000003	000000A0	Write CAN Master SETUP_3 register.
READ	CAN	00000020	000000E0	
READ	CAN	00000021	00000041	Read CAN Master Arbitration registers.
READ	CAN	00000022	00000000	(RX_ARB_0 – RX_ARB_3)
READ	CAN	00000023	00000030	
READ	CAN	00000024	00000000	
READ	CAN	00000025	00000030	
READ	CAN	00000026	000008D	
READ	CAN	00000027	00000078	Read CAN Master Message registers.
READ	CAN	00000028	00000000	(RX_MSG_0 – RX_MSG_7).
READ	CAN	00000029	00000000	
READ	CAN	0000002A	00000000	
READ	CAN	0000002B	00000000	
READ	CAN	0000002C	0000001	Read CAN Master RX_STATUS register.
READ	EXT	00100364	00000810	HOST reads CCIPC "HurriCANe & CCIPC Status" register
READ	EXT	0010036C	00001000	HOST reads CCIPC "IRQ status" register
WRITE	EXT	00100370	10000000	HOST writes CCIPC "IRQ mask-clear" register
READ	EXT	0010036C	00000000	HOST reads CCIPC "IRQ status" register
READ	EXT	00200000	00000802	HOST reads External RAM momenty
READ	EXT	00200004	60000120	HOST TEAUS EXTERNAL RAIVE MEMOLY

Tab. 8-4: Log File example and explanation.

Because the time stamp value could vary depending on simulator used, could be useful having a Log file without time stamp information. The following command creates a Log file (*report_val.txt*) without time information:

>	cat	report.txt		awk	'{printf	"%-5s	%S	%S	%S	\n",\$3,\$4,\$5,\$6}'	>
rej	port	val.txt									

8.4 Test Procedures Simulation

In this paragraph, the instructions to perform the tests included in the DataBase and to define new test procedures are described.

8.4.1 CCIPC Default Tests

All the tests corresponding to the CCIPC test procedure can be easily executed exploiting the CCIPC_test.sh shell-script.

The CCIPC_test script executes the following steps:

- Generates specific test configuration file
- Compiles the new VHDL testbench
- Launches the simulation scripts

At the end of simulation, it automatically checks if the test is correctly passed comparing the produced output file with the correspondent reference output file. All the test reference files (*report_XXXX.txt*) are contained in the "*SIM_SCRIPT/VRP_TEST*" directory.

Before starting with the test procedures, compile the *edac_rom* program that allows generating a ROM file compliant with the test-bench ROM device starting to one generated by the CCIPC Configuration Tool.

Enter in SIM_SCRIPT directory:

> cd YOUR PATH/SIM SCRIPT

and compile the program:

> gcc -o edac rom edac rom.c -lm

Now to perform the tests enter in your simulation directory

> cd YourSIM

Create a symbolic link to the following executables:

```
> ln -s CCIPC_DB/SIM_SCRIPT/CCIPC_test.sh
> ln -s CCIPC_DB/SIM_SCRIPT/CCIPCTestWriter.pl
> ln -s CCIPC_DB/SIM_SCRIPT/edac_rom
```

To run tests included in VRP_TB directory and reported in Tab. 5-5 launch the CCIPC_test.sh command specifying the test name.

>./CCIPC test.sh -name TP5113 boot

At the end of simulation, if the test is passed the following messages appears:

> Simulation success: files match

Otherwise, the test returns:

> Simulation failure: files differ

File name: CAS-CCIPC-DTS-0001.doc

8.4.2 User Defined Tests

To create a new test procedure, generate the specific test file (*MYFILE.in*) using the instructions defined in Tab. 8-1.

Using the CCIPCTestWriter script, compile the MYFILE.in test and redirect the output to the stimuli.txt file.

> ./CCIPCTestWriter.pl MYFILE.in > YourSIM/stimuli.txt

If a new ROM image file has to be generated, use the following command (*dcf.dat* is the default input file for the test-bench ROM device):

> ./edac rom YOUR ROM.txt dcf.dat

Compile and simulate the new test.

9

SYNTHESIS AND FITTING SCRIPTS

Synthesis and fitting scripts for the different devices and corresponding tools are included in the SYN_SCRIPT and FIT_SCRIPT directories.

The constraint files (*CCIPC.sdc* for Microsemi and *CCIPC.ucf* for Xilinx), included in the SYN_SCRIPT directory, keep the system clock and peripheral timing constraints for the CCIPC design and they are used during synthesis process.

Before proceeding with Synthesis and Fitting processes assure that all files needed to instantiate memory module for the selected technology have been correctly generated and copied in the correspondent directory (see §5.2.1).

9.1 Microsemi (RT)AX FPGA

9.1.1 Synthesis

In SYN_SCRIPT/ACTEL directory three different example of synthesis project files are available to synthetize the CCIPC in one of the possible configurations (Generic I/O, AMBA and Direct). Open the desired file with the Synplify Pro Actel Edition tool.

Synplify Pro 9.64 - [Y:/CANOPEN_FPGA_DB/SYN/CCIPC.prj]					
B 🗐 File Edit View Project Import IP Run Analysis HDL-Analyst Options Window Tech-Support Web Help			_ð×		
▶ # ● ■ ● ■ ● ▲ ● ● ■ ● ▲ ● ● ■ ● ● ■ ■ ● ■ ■ ■ ■ ● ■ ■ ● ■ ■ ● ■ ■ ● ■ ■ ● ■ ■ ● ■ ■ ● ■ ■ ● ■ ■ ● ■ ■ ■ ■ ● ■ ■ ■ ■ ● ■ ■ ● ■ ■ ■ ■ ● ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	\$\$ \$> \$\$ \$\$, \$\$, \$\$, \$\$,	Q, 11, L	5 N		
Rtax250 - Actel Axcelerator : RTAX2505 : CQFP352 : Std Cose Project Cose Project Rtax250 - Actel Axcelerator : RTAX2505 : CQFP352 : Std Cose Project	RTAX250	Size	Type Modified		
Add File Add File Add Implementation Add Post Implementation Add Post Implementation Add Post Implementation Frequency(MHz):	B → CupC areas Syntmp CupC.areas CupC.cae CupC.cae CupC.cae CupC.cae CupC.cae CupC.sae CupC.sae	34 k8 4 MB 9 k8 324 bytes 206 bytes 401 k8 119 k8 393 k8 25 k8	Directory 16:01:33 12-mag-2010 Directory 15:21:57 12-mag-2010 Directory 15:22:17 12-mag-2010 Directory 15:22:17 12-mag-2010 den File 16:06:11 12-mag-2010 fse File 16:06:11 12-mag-2010 htm File 11:35:26 18-mag-2010 so File 16:06:11 12-mag-2010 Netkit (6:06:16 12-mag-2010 Ser File 16:06:13 12-mag-2010 Ser File 16:06:13 12-mag-2010 Netkit (GRL) 16:01:57 12-mag-2010 Netkit (GRL) 16:01:57 12-mag-2010		
16 Auto Constrain PSM Compiler PSM Explorer Resource Sharing CCIPC.prj	CCIPC.bg CCIPC_sdc.sdc D CCIPC_sdc.sdc D traplog.tg	28 kB 450 bytes 1 kB 1	tlg File 16:01:56 12-mag-2010 sdc File 16:06:04 12-mag-2010 tig File 16:02:11 12-mag-2010		
Information	ter	RTAX250			
TCL Script Messages Log Watch					

Fig. 9-1: Microsemi synthesis tool.

If necessary, use the Implementation Option menu (on the left edge) to synthesis option:

- Device selection: choose target FPGA
- Options: change synthesis option
- Constraint: add constraint files
- Implementation results: change synthesis output file destination
- VHDL: set VHDL options

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

vice Options	Constraints Implementation Re	sults Timing Report VHDL	Place and Route		
chnology:	Part	Package:	Speed:		CCIPC_GENIO
ctel Axcelerator	▼ RTAX10005	▼ CQFP352	▼ Std	-	
evice Mapping Options	;				
Option			Value	<u> </u>	
Fanout Guide			20		
Disable I/O Insertion					
Update Compile Point	Timing Data			-	
Click on an option for	description				
/stem Designer Board	File				

Fig. 9-2: Implementation options window.

After configuration phase, start the synthesis process clicking on Run button in the left-top side of the window.

The Synthesis process generates, in the specified output directory, the correspondent netlist file with *.edn* extension.

9.1.2 Fitting

When the synthesis process is completed, in the *FIT_SCRIPT/RTAX* directory, open the *CCIPC.adb* file using the Microsemi Designer tool.

W Designer - [CLPCT]
e Parte de la construction de la
Design Flow
a '
Brick-American
1 1 - 1
Programming File
MultiView Navinator SmartTime
Netlist Discourse I/D Attribute Constraints Timing Smart
Viewer Pint-ditor UnipPlanner Editor Editor Analyzer Power
Netlist Reading Time = 1.0 seconds
Imported the file:
Y:\CANOPEN_FPGA_DB\SYN\RTAX1000\CCIPC.edn
The Import command succeeded (00:00:56)
● Info: The design Y:\CANOPEN_FPGA_DB\FIT\CCIPC.adb was last modified by software version 8.5.1.13.
Opened an existing design Y:\CANOPEN_FPGA_DB\FIT\CCIPC.adb.
III Z T VWI V ELIOZ V MAQUIDO V TAO V
Ready FAM: Axcelerator DIE: RTAX10005 PKG: 352 CQFP

Fig. 9-3: Microsemi fitting tool.

Utilize the Options->Device Selection menu (on the left edge) to change the Device, speed grade, package etc. selections if needed.

Click on the "Programming File" button to start the fitting process.

The fitting process completes with generation of the CCIPC.pdb FPGA programming file.

File name: CAS-CCIPC-DTS-0001.doc

9.2 Xilinx FPGA

9.2.1 Synthesis

The Synthesis process for the Xilinx FPGAs can be executed in two different ways depending on the Xilinx proprietary tool is used or not. In this paragraph, the steps needed to synthetize the CCIPC using a different synthesis tool than Xilinx one are described.

In SYN_SCRIPT/VIRTEX directory three different example of synthesis project files are available to synthetize the CCIPC in one of the possible configurations (Generic I/O, AMBA and Direct). Open the desired file with the Synplify Pro tool:

Synplify Pro 9.6.2 - [Z:/6	CCIPC_DB/SYN_SCRIPT/VIRTEX/CCIPC_GENIO.prj]			
🤌 🗐 Eile Edit View Proje	ct [mport.IP Run Analysis HDL-Analyst Options Window Tech-Sypport Web Help			_8×
🐉 🔮 🖲 📑	🕼 🐟 🗇 🕼 🗛 📢 🏩 🏙 🔮 📕 🙆 🖙 🕱 😫		Q Q N 4 1 1 1	
	R 8 3 5			
• Run	Synplify [®] Pro			
• Run	Ready			
D	CCIPC GENIO - Xlinx Virtex4 : XC4VLX25 : SF363 : -10	CCTRC GENIO		
Copen Project	E- D [CCIPC_GENIO] - Z:\CCIPC_DB\SYN_SCRIPT\VIRTEX\CCIPC_GENIO.prj		/ la la la la ma	
没 Close Project	WHDL CAMMessageStates.vbd[work]	Name	Size Type Modified	
👍 Add File	CANCoreConfiguration.vhd [work]			
Ra Change File	CANRx.vhd [work]			
Add Implementation	CRCCalc.vhd [work]			
A contraction of the contract	ErrorCounters.vhd [work]			
1 Implementation Options	StuffHandler.vhd [work]			
R Add P&R Implementation	CANCore.vhd [work]			
🔌 View Log	CCIPCconf.vhd [work]			
Frequency(MHz):	EDAC_pack.vhd [work]			
• 16	mem_tech.vhd [work] CCIPC_FSM_BLK.vhd [work]			
 Auto Constrain 	ccipc_can.vhd [work]			
FSM Compiler	CCIPC_nterface.vhd [work] MsgOutController.vhd [work]			
PSM Explorer	MsgInController.vhd [work]			
Pipelining 🗹	MemRF.vhd [work]			
Retiming	NetworkManager.vhd [work]			
	wirtex_ram_512x8.vhd [work]			
	MemController.vhd [work] CCIPC.vhd [work]			
	arbiter.vhd (work)			
	CCIPC_GENIO			
-ccirc_aciac(pt)	Televenution (20)	· · · · · · · · · · · · · · · · · · ·		
			Wath	
"opcond" is unrecognize "preserve registers" is	ed option for current device	Log Parameter	CCIPO	C_GENIO
"popfeed" is unrecogniz	zed option for current device			-
*				• •
ICI Script Maccorner		Log Watch		
ce polipe messages		Log water		

Fig. 9-4: Synplify Pro synthesis tool.

If necessary, use the Implementation Option menu (on the left edge) to modify synthesis options:

- Device selection: choose target FPGA
- Options: change synthesis option
- Constraint: add constraint files
- Implementation results: change synthesis output file destination
- VHDL: set VHDL options

vice Options Constrai	Ints Implementation Results I In	hing Report Pi	ace and Route VH	IDL .		CCIPC GENIO
chnology:	Part:	Package:		Speed:		CCI C CENIC
ilinx Virtex4	▼ XC4VLX25	▼ 5F363		-10	•	
vice Mapping Options						
ption			Value		•	
nnotated Properties for Analy	st		•			
anout Guide			10000			
isable I/O Insertion						
ipelining			•			
ndate Compile Roint Timing Da	sta					
Option Description						
Click on an option for descrip	tion					

Fig. 9-5: Implementation options window.

After configuration phase, start the synthesis process clicking on Run button in the left-top side of the window.

The Synthesis process generates, in the specified output directory, the correspondent netlist file with *.edn* extension.

9.2.2 Fitting

When the synthesis process is completed, in the *FIT_SCRIPT/VIRTEX* directory the example ISE project files correspondent to the three possible CCIPC configurations are available.

Open the correct project file using Xilinx ISE tool. The project automatically include the memory netlist file (*.ncg* file) expecting it under LIBRARIES/VIRTEX directory.

Start the Place and Route process double-clicking on "Implement Design" option in "Processes" window.

		RIPT/VIRTEX/CCIPC_GENIO.XISE - [D	esign Summary (imp	lemented)]				
E File Edit View Project Source Process Tools Window Layout	Help							eø
🗋 🌶 🖬 🕼 🕌 🖉 🖻 🗙 🗠 🖉 🖉 💆	卢 🗟 ≽	5 8 8 9 P 12	🖈 🗄 💎					
Design	+=@X	Design Overview	virtex r	am 512x8 Project	Status	(10/24/20)	12 - 13:28	3:45)
🍸 View: 🖲 🇱 Implementation 🔿 🤬 Simulation		Summary	Project File:	CCIPC GENIO.xise	Par	ser Errors	: 7	No Errors
Hierarchy	0	Module Level Utilization Timing Constraints	Module Name:	CCIPC_GENIO	Imp	olementati te:	on f	Placed and Routed
del ⊖ [] xc4vix25-10sf363 + ③	0	Pinout Report Clock Report	Target Device:	xc4vlx25-10sf363		• Errors:	,	No Errors
🖧 👘 virtex_ram_512x8 (virtex_ram_512x8.ngc)		Static Timing	Product Version:	ISE 13.2		• Warning	IS: I	No Warnings
		Errors and Warnings	Design Goal:	Balanced		• Routing	/	All Signals
No Processes Running	5	Synthesis Messages				Results:		Completely Routed
Processes: CCIPC_GENIO	29	Map Messages Place and Route Messages	Design Strategy:	Xilinx Default (unlocked)		Timing Constraints:		All Constraints Met
Design Utilities		Bitgen Messages Bitgen Messages All Implementation Messa	Environment:	System Settings		• Final Tir Score:	ning (0 <u>(Timing</u> Report)
Complement Design Complement Design Complement Design Complement Design		Detailed Reports Synthesis Report						
B. (2) Map App Ap		A Translation Report A Rep Report A Rep Report A Report Secondary Report Secondary Report Secondary Report Enable Message Filtering Optional Design Summary Show Clock Report Show Clock Report		tion Summary			<u>[]</u>	
- 🛟 Generate Programming File			Logic Utilization		Used	Available	Utilizatio	n Note(s)
Configure Target Device Analyze Design Using ChipScope			Number of Slice Fli	p Flops	1,656	21,504	7	%
			Number of 4 input	LUTs	7,085	21,504	32	%
			Number of occupie	d Slices	3,933	10,752	36	%
			Number of Slices related logic	containing only	3,933	3,933	100	%
			Number of Slices unrelated logic	s containing	0	3,933	01	%
			Total Number of 4 i	nput LUTs	7,239	21,504	33	96
		Show Warnings	Number used as	logic	6,385			
			Number used as	a route-thru	154			
			Number used as	16x1 ROMs	700			
			Number of bonded	IOBs	166	240	69	%
			Number of BUFG/B	UFGCTRLs	1	32	31	%
			Number used as	BUFGs	1			
Files C Libraries	2	Design Summary (Impleme	nted) X					
Console								
Total time: 24 secs								
Process "Generate Post-Place & Boute Static Timing" compl	eted succes	fully						
second concrete toos trace a Route State training compa	acces ducces	1						

Fig. 9-6: Xilinx ISE tool.

10 CCIPC MEMORY MAPPING

In this paragraph, the Memory Space mapping defined for the CCIPIC core is reported. The CCIPC utilizes, in its complete version, four different memory areas:

- **Configuration & Status area**. This is implemented in sparse registers assigned to control the main parameters inside the Core. For each entry of this area two different addresses exists:
 - Index.SubIndex CANopen OD reference to access them via CANbus (by CANopen master with SDO)
 - Cfg Address to be used by the Host Device to map the CCIPC registers it memory area
- **On board memory areas**. These are the communication parameters accessible only from CANbus, and the CCIPC private table index not reachable from external ports
- **Shared memory areas**. These are the mapping parameters and the application object that have to be mapped into an external memory to be shared between the CCIPC and its host device;
- Initialization Area. This area contains the default values to initialize the CCIPC and the Object Dictionary after Power-Node or CANopen NMT reset.

The following table summarize the CCIPC memory areas and their access mode.

Memory Area	Section	CANOpen access	Host Interface access	
Configuration & Status		SDO Read, (partially)Write	Read, Write	
On board	Communication Parameters	SDO Read Only	No	
	Addressing pointers	No	No	
Shared	Mapping Parameters	SDO Read Only	Do not modify	
	AOs	PDO/SDO Read Write	Read Write	

Tab. 10-1: Memory area accessibility.

10.1 Configuration & Status Area

The CCIPC Configuration & Status area is composed of the following OD entries:

OD entry	Index	Description
Device Type	1000h	Describes the type of device and its functionality
Error register	1001h	Device error register
COB-ID synch	1005h	COB-ID for Synch object
Synchronous window length	1007h	Length of the time window for synchronous PDO
Consumer Heartbeat time	1016h	Defines the expected heartbeat cycle time (ms)
Producer Heartbeat time	1017h	Defines the heartbeat cycle time (ms)
Identity Object	1018h	Contains general information about the device
Serves SDO	1200h	Describes the SDO server parameters
Redundancy Management	2000h	Describes the Bus Redundancy management parameters
Filler entry	2001h	
Node parameters	2002h	Store the Node-ID and Node Mask defined for the node
CCIPC status and configuration	2003h	Store the main parameters of the CAN controller(e.g. Bit-
		Rate,Errors)

Tab. 10-2: I/O area definition.

In Tab. 10-3 the list of registers defined in the Configuration Area is reported together with their address value.

Index	SubIndex	Register Name	Cfg	Ohi Type
Index	Oubindex	Register Marine	Address	Objiype
1000h		Device Type	0x100200	VAR_U32
1001h		Error register	0x100204	VAR_U8
1005h		COB-ID synch	0x100008	VAR_U32
1007h		Synchronous Window length	0x10020C	VAR_U32
	0h	Heartbeat	0x100210	U8
		consumer time		
1016h	1h	Master	0x100214	U32
		Consumer		
		Heartbeat time		
1017h		Producer	0x100218	U16
		Heartbeat time		
	0h	Identity object	0x10021C	08
	1h	Vendor-ID	0x100220	U32
1018h	2h	Product code	0x100224	U32
	3h	Revision	0x100228	U32
	41-		0	1100
	4n	Serial Number	0x10022C	032
	UN 415	Server SDU	0x100130	08
1000h	in	COB-ID client-	0x100134	032
12000	26		0v100120	1122
	211	client	0x100136	032
	Ob	Redundancy	0v10023C	118
	011	Management	0x100230	00
	1h	Bdefault	0x100240	118
2000h	2h	Ttoggle	0x100244	U8
	3h	Ntoggle	0x100248	U8
	4h	Ctoggle	0x10024C	U8
2001	Oh	Filler entry		U8
	0h	Node	0x100050	U8
00001		parameters		
2002h	1h	ID base	0x100054	U8
	2h	ID mask	0x100058	U8
	0h	CCIPC status &	0x10035C	U8
		configuration		
	1h	HurriCANe	0x100360	U32
		configuration		
	2h	HurriCANe &	0x100364	U32
		CCIPC status		
	3h	CCIPC-SDO	0x100368	U32
2003h	46		0.400000	1122
	4N		0x10036C	032
	5N Ch	IKQ mask-clear	0x100370	032
	6N 75		0x100374	032
	/[] 		0x100378	032
	01		0x100370	032
	90		0x100380	032
	Rh		0x100384	0.02
			0X100300	032

CCIPC - Data Sheet

Index	SubIndex	Register Name	Cfg Address	Obj Type
	Ch	TPDO IRQ2	0x10038C	U32
	Dh	TPDO IRQ3	0x100390	U32
	Eh	EDAC error	0x100394	U32
	Fh	TPDO Trig	0x100398	U32
	10h	SDO multiplexor	0x10039C	U32

Tab. 10-3: Configuration Register mapping.

Each register is defined in next tables. Each table is composed of the following fields:

- field: it associates a mnemonic name to register field;
- **sdo**: it indicates the access type supported via SDO;
- host: it indicated how Host can access to the register;
- rst: it indicates the reset value of the field. The following notation is used:
 - **Binary**: single(') or double(") quotes indicate binary values; 0
 - Hexadecimal: 0xnn notation indicates an Hexadecimal number; 0
 - RST VAL: the reset value is indicated in the correspondent parameter available in the 0 CCICP configuration file (CCIPCconf.vhd).

Three different access types are defined:

- ro Read Only; ٠
- rw Read Write;
- rc Read and clean. A write access only cleans the value of the register.

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 10	i 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
field	addon_info	profile_number				
sdo	ro	ro				
host	ro	ro				
rst	DEV_TYPE[3116]	DEV_TYPE[150]				

Device Type Register: Index 1000h - Sub-Index 0h - Address 0x100200

Bit Number	Mnemonic	Description
150	profile_number	Device Profile
3116	addon_info	Device Additional info

Error Register: Index 1001h - Sub-Index 0h - Address 0x100204

							<u> </u>																																									
	31	13	30	29	2	8	27	2	26	52	5	24	1	23	22	21	1	20	1	9	18	3 1	17	1	6	15	5 ′	14	1	3	1	2	11	1	0	9	8	7	7	6	5	5	4	3	2	1	()
field																	re	se	r٧	vec	þ																		man orr	reserved	dev_err		comm_err	temp	voltage	current	yen_en	
sdo		ro																																														
host		ro rw																																														
rst		0x000000 0x00																																														

Bit Number	Mnemonic	Description
0	gen_err	Generic Error
1	current	Current error
2	voltage	Voltage error
3	temperature	Temperature error
4	comm_err	Communication error

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Bit Number	Mnemonic	Description			
5	dev_err	Device profile specific error			
7	man_err	Manufacturer specific error			

COB-ID Sync: Index 1005h - Sub-Index 0h - Address 0x100008

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0					
field	sync_cobid					
sdo	ro					
host	ro					
rst	0x80					

Bit Number	Mnemonic	Description
310	synch cobid	COB-ID of Sync message

Synchronous Window Length: Index 1007h - Sub-Index 0h - Address 0x10020C 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 field Swl swl

Bit Number	Mnemonic	Description
310	swl	Synchronous window length value

> Heartbeat Consumer Time : Index 1016h - Sub-Index 0h - Address 0x100210

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
field	reserved	hbc_s0
sdo		ro
host	ro	ro
rst	0x00000	0x1

Bit Number	Mnemonic	Description
70	hbc_s0	Subindex0 of Heartbeat Consumer Time entry

> Master - Heartbeat Consumer Time: Index 1016h - Sub-Index 1h - Address 0x100214

	31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
field	reserved	m-id	hbc
sdo		rw	rw
host	ro	ro	ro
rst	0x00	MST_NODEID	CONS_HB

Bit Number	Mnemonic	Description					
150	hbc	Heartbeat consumer time value (in ms)					
2316	m-id	Node-Id of expected Heartbeat					

Heartbeat Producer Time: Index 1017h - Sub-Index 0h - Address 0x100218

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
field	reserved	hbp								
sdo		rw								
host	ro	ro								
rst	0x000000	PROD_HB								

File name: CAS-CCIPC-DTS-0001.doc

 \geq

Bit Number	Mnemonic	Description
150	hbo	Heartbeat producer time value (in ms)

Identity Object : Index 1018h - Sub-Index 0h - Address 0x10021C

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
field	reserved	identity_s0
sdo		ro
host	ro	ro
rst	0x000000	0x4

Bit Number	Mnemonic	Description
70	identity_s0	SubIndex-0 of Identity Object entry

Vendor-Id: Index 1018h - Sub-Index 1h - Address 0x100220

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
field	Vendor-Id
sdo	ro
host	ro
rst	0x0305

Bit Number	Mnemonic	Description
310	Vendor-Id	Vendor Id

Product Code: Index 1018h - Sub-Index 2h - Address 0x100224

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
field	Product code
sdo	ro
host	ro
rst	0

Bit Number	Mnemonic	Description
310	Product code	Product code

Revision Number Code: Index 1018h - Sub-Index 3h - Address 0x100228 31 30 29 28 27 26 25 24 23 22 10 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 field rev_num ro ro</td

Bit Number	Mnemonic	Description
310	Rev_num	Revision Number

Serial Number Code: Index 1018h - Sub-Index 4h - Address 0x10022C

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
field	ser_num
sdo	ro
host	ro
rst	0x0

Bit Number	Mnemonic	Description
310	ser_num	Serial Number

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Server SDO Parameter : Index 1200h - Sub-Index 0h - Address 0x100130

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
field	reserved	sdo_s0
sdo		ro
host	ro	ro
rst	0x000000	0x2

Bit Number	Mnemonic	Description
70	sdo_s0	SubIndex-0 of Server SDO Parameter entry

	COB-ID client-server: Index 1200h - Sub-Index 1h - Address 0x100134				
	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
field	id_cs				
sdo	ro				
host	ro				
rst	0x600 + CCIPC_NodeID				

Bit Number	Mnemonic	Description
310	id_cs	COB-ID client server

COB-ID server-client: Index 1200h - Sub-Index 2h - Address 0x100138 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 field id_sc sdo ro host ro rst 0x580 + CCIPC_NodeID

Bit Number	Mnemonic	Description
310	id sc	COB-ID server client

Redundancy Management : Index 2000h - Sub-Index 0h - Address 0x10023C

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
field	reserved	brm_s0
sdo		ro
host	ro	ro
rst	0x00000	0x4

Bit Number	Mnemonic	Description
70	brm _s0	SubIndex-0 of Bus Redundancy management entry

> Bdefault: Index 2000h - Sub-Index 1h - Address 0x100240

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
	reserved	reserved _o
field		et l
sdo		ro
host	ro	ro
rst	0x0	B_DEF

File name: CAS-CCIPC-DTS-0001.doc

 \triangleright

 \triangleright

Bit Number	Mnemonic	Description
1	b_def	Default CAN Bus

Ttoggle: Index 2000h - Sub-Index 2h - Address 0x100244

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
field	reserved	t_toggle
sdo		rw
host	ro	rw
rst	0x0	T_TOGGLE

Bit Number	Mnemonic	Description
70	t_toggle	Ttoggle value

> Ntoggle: Index 2000h - Sub-Index 3h - Address 0x100248

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
field	reserved	n_toggle
sdo		rw
host	ro	rw
rst	0x0	N_TOGGLE

Bit Number	Mnemonic	Description
70	n_toggle	Ntoggle value

Ctoggle: Index 2000h - Sub-Index 4h - Address 0x10024C

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
field	reserved	c_toggle
sdo		rc
host	ro	rc
rst	0x0	0x00

Bit Number	Mnemonic	Description
70	c_toggle	Ctoggle value

> Node Parameters : Index 2002h - Sub-Index 0h - Address 0x100050

	<u>31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8</u>	7 6 5 4 3 2 1 0
field	reserved	Nodepar_s0
sdo		ro
host	ro	ro
rst	0x00000	0x2

Bit Number	Mnemonic	Description
70	Nodepar_s0	SubIndex-0 of Node Parameters entry

ID Base: Index 2002h - Sub-Index 1h - Address 0x100054

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
field	reserved	node_id
sdo		ro
host	ro	ro
rst	0x0	0x00

File name: CAS-CCIPC-DTS-0001.doc

Bit Number	Mnemonic	Description
70	node_id	CCIPC Node-ID value sampled from external dedicated pins

ID Mask: Index 2002h - Sub-Index 2h - Address 0x100058

	ID Mask: Index 2002h - Sub-Index 2h - Address 0x100058					
	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0				
field	reserved	node_mask				
sdo		ro				
host	ro	ro				
rst	0x0	0x00				

Bit Number	Mnemonic	Description
70	node_mask	CCIPC Node Mask value calculated from external dedicated pins

CCIPC Status & Configuration : Index 2003h - Sub-Index 0h - Address 0x10035C

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
field	reserved	st&cfg_s0
sdo		ro
host	ro	ro
rst	0x000000	0x10

Bit Number	Mnemonic	Description
70	st&cfg	SubIndex-0 of CCIPC Status and Configuration entry

\triangleright HurriCANe configuration: Index 2003h - Sub-Index 1h - Address 0x100360

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14	13	12 11 10	9 8 7 6	5 4 3 2	1 0
field	reserved	can_rst	RSJ	PS2	PS1	BPR
sdo		ro	ro	ro	ro	ro
host	ro	rw	rw	rw	rw	rw
rst	0x0	'1'	RSJ_VAL	PS2_VAL	PS1_VAL	BPR_VAL

Bit Number	Mnemonic	Description
10	BPR	Frequency scaler value
52	PS1	Phase Segment 1 value
96	PS2	Phase Segment 2 value
1210	RSJ	Resynchronization Jump width
13	can_rst	Active High CAN Core reset

HurriCANe & CCIPC status: Index 2003h - Sub-Index 2h - Address 0x100364 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 field tx_err_cnt rx_err_cnt reserved auto_ ccipc_state _snq active_ err_passive msgin_full reserved off р Р _bus sdo ro rw ro host ro ro ro ro '0' '0' '0' '0' '0' "000000" 0x0 0x0 rst 0x0 AUTO_ OPER

Bit Number	Mnemonic	Description
50	ccipc state	CCIPC NMT state value:
		• 000001 \rightarrow Initialising
		 000010 → Reset Application
		 000100 → Reset Communication
		 001000 → Pre-Operational
		 010000 → Operational
		 100000 → Stopped
6	active_bus	Currently CAN bus used
7	msgin_full	MsgIn Queue full condition.
		This condition arises when number of received CAN message is
		greater than 32, that corresponds to the size of queue of
		incoming message.
		This condition is handle as a CAN interface error and is
		associated to Error IRQ line.
		User has to clear this bit during the IRQ handling.
9	err_passive	CAN core Error Passive condition.
10	bus_off	CAN core Bus Off condition.
11	auto_op	This fag indicates if the Auto-operational condition is activated or
		not.
		If '1' CCIPC automatically enters in Operational state after
		Initialization phase.
2316	rx_err_cnt	CAN core Receiver error counter value.
3124	tx_err_cnt	CAN core Transmitter error counter value.

> SDO Abort Code: Index 2003h - Sub-Index 3h - Address 0x100368

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
field	sdo_abort_code
sdo	ro
host	ro
rst	0x0000000

Bit Number	Mnemonic	Description
310	sdo_abort_code	SDO Abort Code. It stores the last abort code received or transmitted.

File name: CAS-CCIPC-DTS-0001.doc

The CCIPC returns the following abort codes:

Abort Code (Hex)	Description									
05030000	Toggle bit not alternated									
05040001	Client Server command specifier not valid or unknown									
06010002	Attempt to write a read only object									
06070010	Data type does not match, length of service parameter does not match									
06090011	Subindex does not exist									
05040002	Invalid Block size									
05040003	Invalid Sequence number									
08000000	General Error									

Tab. 10-4: CCIPC Abort condition and test configurations

> IRQ status: Index 2003h - Sub-Index 4h - Address 0x10036C

	31 30 29 28 27 26 25 24 2	3 22 21 20 19 18 17 16	5 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
field	reserv	ved	can_err	edac_err	bus_sw	nmt_cos	init_sdo	tpdo_serr	tpdo_generr	rpdo_flush	rpdo_ff	rpdo_generr	swl_exp	end_sync	sdo_abort	end_sdo	pdo_tx	pdo_rx
sdo			ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro
host			ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro
rst	0x000	00	'0'	'0'	'0'	'0'	'0'	'O'	' 0'	ʻ0'	ʻ0'	'0'	'0'	'0'	'0'	' 0'	' 0'	'0'

Bit Number	Mnemonic	Description	IRQ line										
0	pdo_rx	RPDO successfu	TRX_IRQ										
1	pdo_tx	TPDO successfu	PDO successfully processed										
2	end_sdo	SDO successfully	y completed			TRX_IRQ							
3	sdo_abort	SDO abort detec	ted			ERR_IRQ							
4	end_sync	SYNC elaboratio	n completed			SYNC_IRQ							
5	swl_exp	Synchronous Wir	ndow expired			ERR_IRQ							
6	rpdo_generr	RPDO generic el	rror includes the	following co	nditions:	ERR_IRQ							
		 Addre 	essed RPDO has	a not valid	ID;								
		Wron	g Mapping paran	neter;									
		Wron	g length of servic	e									
7	rpdo_ff	Synch Fifo Full.				ERR_IRQ							
		Synch Fifo full co	ondition arises w	hen numbei	r of synchronous								
		RPDO message	s received is gro	eater than	Synch Fifo size.								
		The supported	size is reported	in the ne	ext table and is								
		dependent on nu	mber of nodes s	upported:									
			Nodes	Fifo size									
			Number	-									
			1	4									
			2	8									
			4	16									
			8 16										
			16	16									
			32	16									
8	rpdo_flush	Synch Fifo Flush				ERR_IRQ							

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

SITAE	EL
-------	----

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 70 of 113

Bit Number	Mnemonic	Description I							
		This condition arises when Synchronous Window expired and some RPDOs are still in the Synch Fifo.							
9	tpdo_generr	 TPDO generic error includes the following conditions: Addressed TPDO has a not valid ID; Wrong Mapping parameter 	ERR_IRQ						
10	tpdo_serr	Synchronous TPDO not managed. Synchronous Window expires and some TPDOs have to be elaborated.	ERR_IRQ						
11	init_sdo	Initiate SDO request accepted.	TRX_IRQ						
12	nmt_cos	CCIPC change of state.	TRX_IRQ						
13	bus_sw	CCIPC executes a Bus switch operation	ERR_IRQ						
14	edac_err	EDAC error flag.	ERR_IRQ						
15	can_err	Error on CAN interface.	ERR_IRQ						

The following register allows masking and clearing different CCIPC IRQ. The following notation is used to mask and unmask IRQ:

- '0' not masked. IRQ propagated
- '1' masked. IRQ not propagated.
- > IRQ Mask-clear: Index 2003h Sub-Index 5h Address 0x100370

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
field	can_err_clear	edac_err_clear	bus_sw_clear	nmt_cos_clear	init_sdo_clear	tpdo_serr_clear	tpdo_generr_clear	rpdo_flush_clear	rpdo_ff_clear	rpdo_generr_clear	swl_exp_clear	end_sync_clear	sdo_abort_clear	end_sdo_clear	pdo_tx_clear	pdo_rx_clear	can_err_mask	edac_err_mask	bus_sw_mask	nmt_cos_mask	init_sdo_mask	tpdo_serr_mask	tpdo_generr_mask	rpdo_flush_mask	rpdo_ff_mask	rpdo_generr_mask	swl_exp_mask	end_sync_mask	sdo_abort_mask	end_sdo_mask	pdo_tx_mask	pdo_rx_mask
sdo	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro
host	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
rst	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'

Bit Number	Mnemonic	Description
0	pdo_rx_mask	Mask RPDO successfully processed IRQ.
1	pdo_tx_mask	Mask TPDO successfully processed IRQ.
2	end_sdo_mask	Mask SDO successfully completed IRQ.
3	sdo_abort_mask	Mask SDO abort detected IRQ.
4	end_sync_mask	Mask SYNC elaboration completed IRQ.
5	swl_exp_mask	Mask Synchronous Window expired IRQ.
6	rpdo_generr_mask	Mask RPDO generic error IRQ.
7	rpdo_ff_mask	Mask Synch Fifo Full IRQ.
8	rpdo_flush_mask	Mask Synch Fifo Flush IRQ.
9	tpdo_generr_mask	Mask TPDO generic error IRQ.
10	tpdo_serr_mask	Mask Synchronous TPDO not managed IRQ.
11	init_sdo_mask	Mask Initiate SDO request accepted IRQ.
12	nmt_cos_mask	Mask CCIPC change of state IRQ.
13	bus_sw_mask	Mask CCIPC executes a Bus switch operation IRQ.
14	edac_err_mask	Mask EDAC error flag IRQ.
15	can_err_mask	Mask Error on CAN interface IRQ.

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

|--|

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 71 of 113

Bit Number	Mnemonic	Description					
16	pdo_rx_clear	Clear RPDO successfully processed IRQ.					
		When set to '1' it automatically clear also all the RPDO IRQ					
		registers.					
17	pdo_tx_clear	Clear TPDO successfully processed IRQ.					
		When set to '1' it automatically clear also all the RPDO IRQ					
		registers.					
18	end_sdo_clear	Clear SDO successfully completed IRQ.					
19	sdo_abort_clear	Clear SDO abort detected IRQ.					
20	end_sync_clear	Clear SYNC elaboration completed IRQ.					
21	swl_exp_clear	Clear Synchronous Window expired IRQ.					
22	rpdo_generr_clear	Clear RPDO generic error IRQ.					
23	rpdo_ff_clear	Clear Synch Fifo Full IRQ.					
24	rpdo_flush_clear	Clear Synch Fifo Flush IRQ.					
25	tpdo_generr_clear	Clear TPDO generic error IRQ.					
26	tpdo_serr_clear	Clear Synchronous TPDO not managed IRQ.					
27	init_sdo_clear	Clear Initiate SDO request accepted IRQ.					
28	nmt_cos_clear	Clear CCIPC change of state IRQ.					
29	bus_sw_clear	Clear CCIPC executes a Bus switch operation IRQ.					
30	edac_err_clear	Clear EDAC error flag IRQ.					
31	can_err_clear	Clear Error on CAN interface IRQ.					

The following registers (RPDO-IRQ0-3 and TPDO-IRQ0-3) indicate which RPDOs and TPDOs have been successfully elaborated.

The number of RPDOs and TPDOs available depends on the number of node (**Node count**) allocated for the CCIPC core. The following table describes the relationship between node count, T/RPDOs and IRQ register allocation:

Node Count	Max R(T)PDOs	Allocated Registers
1	4 (4)	R(T)PDO_IRQ0[30]
2	8 (8)	R(T)PDO_IRQ0[70]
4	16 (16)	R(T)PDO_IRQ0[150]
8	32 (32)	R(T)PDO_IRQ0
16	64 (64)	R(T)PDO_IRQ0
		R(T)PDO_IRQ1
32	128 (128)	R(T)PDO_IRQ0
		R(T)PDO_IRQ1
		R(T)PDO_IRQ2
		R(T)PDO_IRQ3

Tab. 10-5: NodeCount vs PDO IRQ registers.

RPDO-0 IRQ: Index 2003h - Sub-Index 6h - Address 0x100374

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
field	rpdo_31	rpdo_30	rpdo_29	rpdo_28	rpdo_27	rpdo_26	rpdo_25	rpdo_24	rpdo_23	rpdo_22	rpdo_21	rpdo_20	rpdo_19	rpdo_18	rpdo_17	rpdo_16	rpdo_15	rpdo_14	rpdo_13	rpdo_12	rpdo_11	rpdo_10	rpdo_9	rpdo_8	rpdo_7	rpdo_6	rpdo_5	rpdo_4	rpdo_3	rpdo_2	rpdo_1	rpdo_0
sdo	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro																					
host	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro																					
rst	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

|--|

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 72 of 113

Bit Number	Mnemonic	Description
31 0	rpdo_i	RPDO from 1 to 31 correctly elaborated. To clear this register write '1' on "pdo_rx_clear" field of "IRQ Mask-Clear register".

> RPDO-1 IRQ: Index 2003h - Sub-Index 7h - Address 0x100378

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
field	rpdo_63	rpdo_62	rpdo_61	rpdo_60	rpdo_59	rpdo_58	rpdo_57	rpdo_56	rpdo_55	rpdo_54	rpdo_53	rpdo_52	rpdo_51	rpdo_50	rpdo_49	rpdo_48	rpdo_47	rpdo_46	rpdo_45	rpdo_44	rpdo_43	rpdo_42	rpdo_41	rpdo_40	rpdo_39	rpdo_38	rpdo_37	rpdo_36	rpdo_35	rpdo_34	rpdo_33	rpdo_32
sdo	ro																															
host	ro																															
rst	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'

Bit Number	Mnemonic	Description
310	rpdo_i	RPDO from 32 to 63 correctly elaborated.
		To clear this register write '1' on "pdo_rx_clear" field of "IRQ
		Mask-Clear register".

RPDO-2 IRQ: Index 2003h - Sub-Index 8h - Address 0x10037C 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 31 30 9 8 7 6 5 4 3 2 1 0 field rpdo_ rpdo<u>.</u> rpdo_ rpdo_ rpdo_ rpdo_ rpdo rpdo_ rpdo_ rpdo_ rpdo<u>.</u> rpdo_ rpdo_ rpdo_ 64 ဗ်င်္ပ ဖြ 92 -90 89 88 _86 85 83 '∞ _80 69 '94 'ω 87 68 '<u>ရ</u> 66 65 50 8' ב 76 3 4 ัЗ 22 ビ 5 sdo ro host rst 'O' 'O' ·0' ·0' ·0' '0' '0' '0'

Bit Number	Mnemonic	Description
31 0	rpdo_i	RPDO from 64 to 95 correctly elaborated. To clear this register write '1' on "pdo_rx_clear" field of "IRQ Mask-Clear register".

> RPDO-3 IRQ: Index 2003h - Sub-Index 9h - Address 0x100380

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
field	rpdo_127	rpdo_126	rpdo_125	rpdo_124	rpdo_123	rpdo_122	rpdo_121	rpdo_120	rpdo_119	rpdo_118	rpdo_117	rpdo_116	rpdo_115	rpdo_114	rpdo_113	rpdo_112	rpdo_111	rpdo_110	rpdo_109	rpdo_108	rpdo_107	rpdo_106	rpdo_405	rpdo_104	rpdo_103	rpdo_102	rpdo_101	rpdo_100	rpdo_99	rpdo_98	rpdo_97	rpdo_96
sdo	ro	ro	ro	ro	ro																											
host	ro	ro	ro	ro	ro																											
rst	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'

Bit Number	Mnemonic	Description
31 0	rpdo_i	RPDO from 96 to 127 correctly elaborated. To clear this register write '1' on "pdo_rx_clear" field of "IRQ Mask-Clear register".

File name: CAS-CCIPC-DTS-0001.doc

> TPDO-0 IRQ: Index 2003h - Sub-Index Ah - Address 0x100384

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
field	tpdo_31	tpdo_30	tpdo_29	tpdo_28	tpdo_27	tpdo_26	tpdo_25	tpdo_24	tpdo_23	tpdo_22	tpdo_21	tpdo_20	tpdo_19	tpdo_18	tpdo_17	tpdo_16	tpdo_15	tpdo_14	tpdo_13	tpdo_12	tpdo_11	tpdo_10	tpdo_9	tpdo_8	tpdo_7	tpdo_6	tpdo_5	tpdo_4	tpdo_3	tpdo_2	tpdo_1	tpdo_0
sdo	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro																					
host	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro	ro																					
rst	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'

Bit Number	Mnemonic	Description
31 0	tpdo_i	TPDO from 1 to 31 correctly elaborated. To clear this register write '1' on "pdo_tx_clear" field of "IRQ Mask-Clear register".

> TPDO-1 IRQ: Index 2003h - Sub-Index Bh - Address 0x100388

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
field	tpdo_63	tpdo_62	tpdo_61	tpdo_60	tpdo_59	tpdo_58	tpdo_57	tpdo_56	tpdo_55	tpdo_54	tpdo_53	tpdo_52	tpdo_51	tpdo_50	tpdo_49	tpdo_48	tpdo_47	tpdo_46	tpdo_45	tpdo_44	tpdo_43	tpdo_42	tpdo_41	tpdo_40	tpdo_39	tpdo_38	tpdo_37	tpdo_36	tpdo_35	tpdo_34	tpdo_33	tpdo_32
sdo	ro																															
host	ro																															
rst	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'

Bit Number	Mnemonic	Description
31 0	tpdo_i	TPDO from 32 to 63 correctly elaborated. To clear this register write '1' on "pdo_tx_clear" field of "IRQ Mask-Clear register".

> TPDO-2 IRQ: Index 2003h - Sub-Index Ch - Address 0x10038C

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
field	tpdo_95	tpdo_94	tpdo_93	tpdo_92	tpdo_91	tpdo_90	tpdo_89	tpdo_88	tpdo_87	tpdo_86	tpdo_85	tpdo_84	tpdo_83	tpdo_82	tpdo_81	tpdo_80	tpdo_79	tpdo_78	tpdo_77	tpdo_76	tpdo_75	tpdo_74	tpdo_73	tpdo_72	tpdo_71	tpdo_70	tpdo_69	tpdo_68	tpdo_67	tpdo_66	tpdo_65	tpdo_64
sdo	ro																															
host	ro																															
rst	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'

Bit Number	Mnemonic	Description
31 0	tpdo_i	TPDO from 64 to 95 correctly elaborated. To clear this register write '1' on "pdo_tx_clear" field of "IRQ Mask-Clear register".

> TPDO-3 IRQ: Index 2003h - Sub-Index Dh - Address 0x100390

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
field	tpdo_127	tpdo_126	tpdo_125	tpdo_124	tpdo_123	tpdo_122	tpdo_121	tpdo_120	tpdo_119	tpdo_118	tpdo_117	tpdo_116	tpdo_115	tpdo_114	tpdo_113	tpdo_112	tpdo_111	tpdo_110	tpdo_109	tpdo_108	tpdo_107	tpdo_106	tpdo_405	tpdo_104	tpdo_103	tpdo_102	tpdo_101	tpdo_100	tpdo_99	tpdo_98	tpdo_97	tpdo_96
sdo	ro	ro	ro	ro	ro																											
host	ro	ro	ro	ro	ro																											
rst	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'	'0'

Bit Number	Mnemonic	Description
31 0	tpdo_i	TPDO from 96 to 127 correctly elaborated. To clear this register write '1' on "pdo_tx_clear" field of "IRQ Mask-Clear register".

> EDAC error: Index 2003h - Sub-Index Eh - Address 0x100394

	31 30 29 28 27 26 25 24 23 22 21 20 19 18	17	16	15 14 1	3 12	11	10	9	8	7 (6 5	4	3	2	1	0
field	reserved	derr_mask	serr_mask	reserv	/ed	queue_en	mem_en	derr	serr		ų	serr <u></u>	_cn	t		
sdo	ro	ro	ro	ro		ro	ro	ro	ro			r	0			
host	ro	rw	rw	ro		rw	rw	rc	rc			r١	N			
rst	"000000000000"	'0'	'0'	0x0)	'0'	'0'	'0'	'0'			0x	00			

Bit Number	Mnemonic	Description
70	serr_cnt	Counter of Single error events. The counter of single error events
		can be initialized at a predefined value through a write access to
		this field.
8	serr	Single error flag.
		This bit is set when the serr_cnt exceeds the 255 errors.
		This bit is auto cleared every time this register is written.
9	derr	Double error flag.
		This bit is auto cleared every time this register is written.
10	mem_en	Enable EDAC capability on CCIPC memories.
11	queue_en	Enable EDAC capability on CCIPC queues.
16	serr_mask	Mask single error event
		 '0' – not masked. IRQ propagated.
		 '1' – masked. IRQ not propagated.
17	derr_mask	Mask double error event
		 '0' – not masked. IRQ propagated.
		 '1' – masked. IRQ not propagated.

The EDAC capabilities are disabled at start-up. User has to enable it after CCIPC initialization. Since Double error detection represents a critical condition for the core because the management of wrong values can compromise the CCIPC behaviour, it is strictly recommended that user resets the CCIPC core if this error occurs.

File name: CAS-CCIPC-DTS-0001.doc

> TPDO Trig: Index 2003h - Sub-Index Fh - Address 0x100398

	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
field	reserved	tpdo_num
sdo	ro	ro
host	ro	rw
rst	0x0	0x0

Bit Number	Mnemonic	Description
70	tpdo_num	Number of TPDO to be sent.

The TPDO trig register is used to implement the TPDO event driven functionality. A write operation on this register enables the transmission of selected TPDO. Tab. 10-6 shows the correspondence between TPDO number and TPDO trig register value.

TPDO trig value	TPDO number	OD index
"0000000"	0	1800h
"0000001"	1	1801h
"0000010"	2	1802h
"0000011"	3	1803h
"0000100"	4	1800h
"0000101"	5	1805h
"0000110"	6	1806h
"0000111"	7	1807h
"1111111"	127	187F

Tab. 10-6: TPDO number vs Trig value

SDO multiplexor: Index 2003h - Sub-Index 10h - Address 0x10039C

		-																									
	31 30 29 28 27 2	6 25	24	23	22 2′	20	19	18	17	16	5 15	5 14	4 1	3	12	11	10	9	8	7	6	5	4	3	2	1	0
field	reserved	sdo_up	sdo_dw							in	dex											รเ	ıb_	ind	ex		
sdo	ro	ro	ro								ro												r	o			
host	ro	rw	rw		rw rw		rw																				
rst	"000000"	'0'	'0'							0x(000	0											0x	00			

Bit Number	Mnemonic	Description
70	sub_index	Sub Index value of last SDO service
238	index	Index value of last SDO service
24	sdo_dw	Download SDO type
25	sdo_up	Upload SDO type

The following table shows which events cause the initialization of the registers:

Register	Field	Power-On	Reset Application	Reset Communication	Bus Switch	Note
	addon_info					Constant value
Device Type	profile_number	У	У			

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

CCIPC - Data Sheet

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 76 of 113

				Event		
Register	Field	Power-On	Reset Application	Reset Communication	Bus Switch	Note
	gen_err	у	n	у	у	
	current	У	n	У	У	
	voltage	У	n	У	У	
Error Register	temp	у	n	У	у	
	comm_err	у	n	у	у	
	dev_err	У	n	у	у	
	man_err	у	n	у	у	
COB-ID Synch	synch_cobid	У	n	у	у	
Synchronous Window Lenght	swl					Constant value
Heartbeat Consumer Time	hbc_s0					Constant value
Master Heartbeat	hbc	У	n	у	n	
Consumer Time	m-id	у	n	у	n	
Heartbeat Consumer Time	hbp	У	n	У	n	
Identity Object	identity_s0					Constant value
Vendor-Id	Vendor-Id					Constant value
Product Code	Product Code					Constant value
Revision Number	Revision Number					Constant value
Serial Number Code	Serial Number					Constant value
Server SDO Parameter	sdo_s0					Constant value
COB-ID client- server	id_cs					Constant value
COB-ID server- client	id_sc					Constant value
Redundacy Management	brm_s0					Constant value
Bdefault	b def	v	V	n	n	
Ttoggle	t_toggle	y	y	n	n	
Ntoogle	n_toggle	y	y	n	n	
C_toggle	c_toggle					Constant value
Node Parameters	nodepar_s0					Constant value
ID Base	node_id	У	n	n	n	Value sampled at boot
ID Mask	node mask	v	n	n	n	Value sampled at boot
CCIPC status &	st&cfg_s0					Constant value
Configuration	BPR	v	v	n	v	
	PS1	y v	y v	n	y y	
HurriCANe	PS2	y y	y y	n	y v	
Configuration	RSJ	y y	v	n	y y	
	can rst	y y	y y	n	y v	
	ccipc state	y y	n	n	n	
	active bus	y y	n	n	n	
	msgin full	y y	V	n	v	
HurriCANe &	err passive	y v	y v	n	y v	
CCIPC status	bus off	y v	y v	n	y v	
	auto op	y 	y		y 	Constant value
	rx err ont	v	v	n	v	
	tx_err_ont	y y	y y	n	y y	
SDO Abort Code	sdo abort code	y V	y V	n	y V	
	ndo rx	y V	y V	n	y V	
	ndo tx	y V	y V	n	y V	1
	end sdo	y V	у у	n	у У	1
	sdo abort	y V	y V	n	y V	
IRQ status	end sync	y V	y V	n	y V	
	swl exp	y V	y V	n	y V	
	rpdo generr	v	v	n	v	
	rpdo_ff	y y	y	n	v	

File name: CAS-CCIPC-DTS-0001.doc

S	T	Ε	L

CCIPC - Data Sheet

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 77 of 113

				Event		
Register	Field	Power-On	Reset Application	Reset Communication	Bus Switch	Note
	rpdo_flush	у	У	n	У	
	tpdo_generr	у	у	n	У	
	tpdo_serr	У	у	n	у	
	init_sdo	У	у	n	у	
	nmt_cos	У	у	n	У	
	bus_sw	У	у	n	У	
	edac_err	У	у	n	У	
	can_err	У	у	n	У	
IRQ Mask-clear		У	у	n	У	
RPDO-0 IRQ		У	у	n	У	
RPDO-1 IRQ		У	у	n	У	
RPDO-2 IRQ		У	у	n	У	
RPDO-3 IRQ		У	у	n	У	
TPDO-0 IRQ		У	у	n	У	
TPDO-1 IRQ		У	у	n	У	
TPDO-2 IRQ		У	у	n	У	
TPDO-3 IRQ		У	У	n	У	
	serr_cnt	у	у	n	у	
	serr	у	У	n	У	
	derr	у	У	n	У	
EDAC error	mem_en	У	n	n	n	
	queue_en	У	n	n	n	
	serr_mask	У	у	n	У	
	derr_mask	у	У	n	У	
TPDO Trig	tpdo_num	у	У	n	У	
	sub_index	у	у	n	у	
SDO multiployor	index	у	у	n	у	
	sdo_dw	У	у	n	У	
	sdo_ul	у	у	n	у	

Tab. 10-7: Initaliaztion event for Configuration and Status Area Registers.

10.1.1 IRQ Handling

As already defined in §7.1.3 the CCIPC handles three IRQ lines:

- Transfer IRQ (TRX_IRQ)
- Synch elaboration completed (SYNCH_IRQ)
- Error IRQ (ERR_IRQ)

User has to clear the IRQ request. Three simple "pseudo-code" examples of CCIPC IRQ manager are written below:

```
TRX_IRQ
```

```
irq_status = IRQ_status_reg;
ARPDO_IRQ = irq_status[0];
ATPDO_IRQ = irq_status[1];
SDO_IRQ = irq_status[2];
INITSDO_IRQ = irq_status[11];
NMT_CS_IRQ = irq_status[12];  ## NMT change state
if (ARPDO_IRQ) {
    elab_rpdo = RPDO_IRQx_reg;
    while(elab_rpdo) {
        <Elaborate Data>
    }
```

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

|--|

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 78 of 113

}	<pre>IRQ_MASK_CLEAR_reg = 0x10000;</pre>	# # # #	clear clear	RPDO also	part RPDO	of PDO_IRQ_reg IRQ registers
if	<pre>(ATPDO_IRQ) { elab_tpdo = TPDO_IRQX_reg; while(elab_tpdo) { <elaborate data=""> }</elaborate></pre>					
}	<pre>IRQ_MASK_CLEAR_reg = 0x20000;</pre>	# # # #	clear clear	TPDO also	part TPDO	of PDO_IRQ_reg IRQ registers
if }	(SDO_IRQ) { <elaborate data=""> IRQ_MASK_CLEAR_reg = 0x40000;</elaborate>	##	clear	SDO I	IRQ	
if }	(INITSDO_IRQ){ <read muliplexor="" register=""> IRQ_MASK_CLEAR_reg = 0x8000000;</read>	##	clear	SDO I	IRQ	
if	<pre>(NMT_CS) { nmt_state = HurriCANe_&_CCIPC_statu IRQ_MASK_CLEAR_reg = 0x10000000;</pre>	ls_r	eg & 0	x1F>	#	## read NMT state ## clear SDO IRQ

SYNCH IRQ

```
irq status = read(IRQ status reg);
SRPDO IRQ = irq status[0];
STPDO_IRQ = irq_status[1];
if (SRPDO IRQ) {
   elab rpdo = RPDO IRQx reg;
      while(elab rpdo) {
      <Elaborate Data>
   }
   IRQ MASK CLEAR reg = 0x10000; ## clear RPDO part of PDO IRQ reg
                                       ## clear also RPDO IRQ registers
}
if (STPDO IRQ) {
   elab tpdo = TPDO IRQx reg;
      while(elab_tpdo) {
      <Elaborate Data>
   }
   IRQ MASK CLEAR reg = 0x20000;
                                      ## clear TPDO part of PDO IRQ reg
                                       ## clear also TPDO IRQ registers
}
IRQ MASK CLEAR reg = 0x100000;
                                       ## clear SYNCH IRQ
```

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

ERROR IRQ

If SYNCH_IRQ is cancelled before clearing the full PDO_IRQ register, the TRX_IRQ line rises up again for effect of CCIPC T/RPDO requests still pending and to be processed.

```
irq_status = read(IRQ_status_reg);
<Manage error>
IRQ MASK CLEAR reg = ERROR CLEAR BIT; ## clear specific error bit
```

The *MsgIn Queue full* (incoming message queue full) condition is associated to the HurriCANe error flag (bit 15 of IRQ status register). Before clean the IRQ status register, user has to clear the MsgIn Queue full error by writing the correspondent bit of *HurriCANe and CCIPC status*.

```
MsgIn Queue full error
irq_status = read(IRQ_status_reg);
can_err = irq_status[15];
if (can_err) {
    msgin_full = (read(HurriCANe&CCIPC_status_reg)) >> 7) ## Msgin full error
    if (msgin_full) {
        HurriCANe&CCIPC_status_reg = 0 ## Clear Msgin error
    }
}
IRQ_MASK_CLEAR_reg = 0x8000000; ## clear Can error
```

10.2 On-board Area

This memory section is used to store:

- PDO Communication entries
- AOs index pointers

10.2.1 PDO Communication Entries

The PDO Communication area stores the OD entries used to define the RPDO and TPDO Communication parameters. The list of parameters available in this area is reported in Tab. 10-8. This area is mapped inside the CCIPC core to speed up the elaboration time avoiding conflict with external devices.

OD	entry	Nama	Description			
Index	SubIndex	Name	Description			
1400	0	Number of entries	1 st Receive PDO communication parameters			
	1	RPDO COB-ID				
	2	RPDO Transmission type				
1401	0	Number of entries	2 nd Receive PDO communication parameters			
	1	RPDO COB-ID				
	2	RPDO Transmission type				
15FF	0	Number of entries	512 th Receive PDO communication parameters			

File name: CAS-CCIPC-DTS-0001.doc

SILLEL	S	ΤΛ	Ε	L
--------	---	----	---	---

00	entry	Nama	Description
Index	SubIndex	Name	Description
	1	RPDO COB-ID	
	2	RPDO Transmission type	
1800	0	Number of entries	1 st Transmit PDO communication parameters
	1	TPDO COB-ID	
	2	TPDO Transmission type	
	3	TPDO Inhibit Time	
	4	Reserved	
	5	TPDO Event Timer	
1801	0	Number of entries	2 nd Transmit PDO communication parameters
	1	TPDO COB-ID	
	2	TPDO Transmission type	
	3	TPDO Inhibit Time	
	4	Reserved	
	5	TPDO Event Timer	
19FF	0	Number of entries	512 th Transmit PDO communication parameters
	1	TPDO COB-ID	
	2	TPDO Transmission type	
	3	TPDO Inhibit Time	
	4	Reserved	
	5	TPDO Event Timer	

Tab. 10-8: T/R PDO Communication parameters.

10.2.2 AOs Addressing Pointers

The AOs addressing area stores the pointers to the Shared Memory utilized by CCIPC to access Application Objects during SDO and PDO elaboration.

These pointers are computed off-line at configuration time and loaded by CCIPC at power-on. This area is neither mapped in the object dictionary nor readable from the Host interface

This area is composed of two section:

- Index pointers area.
- Sub-Index pointers area.

The Index pointers area contains, for each Application Objects defined, the pointers to the Sub-Index0 of the entry.

The Sub-Index area contains the memory addresses of each Sub-index supported by the specific Index. In case of ARRAY or VAR entry type, the second stage of addressing (Sub-Index pointer area) is missing.

In this case, the value returned by the Index area is the Shared memory address of Sub-Index0. A simple algorithm allows reaching the other sub-indexes.

If an entry is defined as RECORD both addressing stages are needed to correctly locate the specific Application Objects.

10.3 Shared Memory Area

The data stored in this area are:

- PDO Mapping parameters entries
- Application Objects

The Mapping parameters are stored starting from Shared Memory base address. The Application Objects can occupy the remaing part of the memory excepts for a dedicated area containing all EDAC bytes.

10.3.1 PDO Mapping Parameters

The PDO Mapping section stores the mapping parameters (Index, Sub-Index and Data type) defined for each RPDO and TPDO.

The list of parameters available in this area is reported in Tab. 10-9:

OD entry		Namo	Description		
Index	SubIndex	Name	Description		
1600	0	Number of entries	1 st Receive PDO mapping parameters		
	1	1 st mapping parameter			
	8	8 th mapping parameter			
1601	0	Number of entries	2 nd Receive PDO mapping parameters		
	1	1 st mapping parameter			
	8	8 th mapping parameter			
17FF	0	Number of entries	512 th Receive PDO mapping parameters		
	1	1 st mapping parameter			
	8	8 th mapping parameter			
1A00	0	Number of entries	1 st Transmit PDO mapping parameters		
	1	1 st mapping parameter			
	8	8 th mapping parameter			
1A01	0	Number of entries	2 nd Transmit PDO mapping parameters		
	1	1 st mapping parameter			
	8	8 th mapping parameter			
1BFF	0	Number of entries	512 th Transmit PDO mapping parameters		
	1	1 st mapping parameter			
	8	8 th mapping parameter			

Tab. 10-9: PDO mapping parameters.

Each PDO Mapping is stored in the Shared memory in a structure containing the sub-index 0 and all the 8 mapping parameters, including the ones not defined. Since each index occupies a single word (4 bytes), each Mapping parameter entry is 9 word length (36 bytes).

Since each CAN node supports 4 TPDOs and 4 RPDOs, the area dedicated to store the Mapping parameters is fixed and depends on number of nodes supported:

Node count	RPDOs	TPDOs	Tot. PDOs	Word Length	Address Range ^(*)
1	4	4	8	72	[base : base+ 11C]h
2	8	8	16	144	[base : base+ 23C]h
4	16	16	32	288	[base : base+ 47C]h
8	32	32	64	576	[base : base+ 8FC]h
16	64	64	128	1152	[base : base+ 11FC]h
32	128	128	256	2304	[base : base+ 23FC]h

File name: CAS-CCIPC-DTS-0001.doc

Node count	RPDOs	TPDOs	Tot. PDOs	Word Length	Address Range ^(*)
(*) 'base' is	the base	address	of the Sha	ared Memory.	

Tab. 10-10: Memory occupation for Mapping parameters.

Since these parameters are stored in the external Shared memory, they are reachable by the Host interface.

To preserve Object Dictionary structure consistency, data in this area must not be modified by Host device.

10.3.2 Application Objects Area

Application Objects corresponding to OD entries from 6000h - 7000h (Read-Write) and 7000h - 8000h (Read-Only) are statically mapped in a memory area shared between CCIPC and its Host Device. The mapping of these parameters is assigned at configuration time and stored in the CCIPC ROM Image file (see §11.1).

To calculate the address of each Application Objects, user has to apply the following rules:

1) The Application Objects area starts immediately after the Mapping parameter area. The base address is a fixed value depending on number of node supported

Node count	Base Address
1	120h
2	240h
4	480h
8	900h
16	1200
32	2400

Tab. 10-11: Application Objects Area base address.

- 2) Each new entry starts at the next word aligned address (0h,4h,8h,Ch);
- 3) The sub-index 0 occupies a single word;
- 4) U8,U16 and U32 Application Objects objects occupies respectively 1, 2 or 4 bytes;
- 5) A VAR object occupies a single word, independently from its type (U8,U16 or U32);
- 6) Each sub-index within an entry occupies consecutive memory locations;
- 7) Each missing entry between two non consecutive entries is mapped with a 4 bytes filler entry;
- 8) The first entry of Read-Only Area is placed immediately after the last Read-Write.

The Host Device can perform read and write operations on data contained in this area. To preserve the CCIPC correct elaboration of the Application Objects, Host Device must not overwrite the Sub-Index0 value of the AOs.

Fig. 10-1 shows an example of memory allocation for a simple Application Objects structure.

						_
	U32					
Entry 7000 ARRAY U32		U				
				U8		
				U16 S-4		
Entry 6003	U16 U32 S-4 S-3					
RECORD	U32 S-3	32 U16 -3 S-2		U8 S-1		
				U8 S-0		
Filler Entry						
Entry 6001 VAR U16			VAR S	-U16 -0		
Entry 6000 ARRAY U8		U8 S-3	U8 S-2	U8 S-1		
				U8 S-0	Base_addr	ess

Index	Sub-Index	Memory Address	
	0	120h	
COOOL	1	124h	
600011	2	125h	
	3	126h	
6001		128h	
Filler Entry		12Ch	
	0	130h	
	1	134h	
6003	2	135h	
	3	137h	
	4	13Bh	
	0	140h	
7000	1	144h	
	2	148h	

Fig. 10-1: Example of Application Objects memory allocation.

File name: CAS-CCIPC-DTS-0001.doc

11 CONFIGURATION TOOL

This section explains how to configure the CCIPC core into a specific CANOpen node.

Each CANOpen node instance is defined by the supported services and by its object dictionary. The protocol services implementation is embedded in the static VHDL core, the object dictionary has to be defined by the final user exploiting the CCIPC configuration tool hereafter simply called CCIPC GUI.

The CCIPC GUI reads, edits and writes out both the standard protocol DCF/EDS files and its specific core files that are the ROM image and VHDL configuration files.

- The VHDL configuration files have to be included in the Core data base before synthetizing and fitting it inside FPGA.
- The ROM image is loaded by CCIPC into its memories at power-or of after restart/reset commands.

The following steps have to be executed to configure and build a new CCIPC instance:

- Start from an existing DCF CANOpen node description, or from scratch, and utilizes the graphical configurator tool to define the new node parameters and object dictionary. Follow the instructions from §Fig. 11-2 to §11.7 set following values
 - Core Interface and clock frequency
 - Configuration objects default values
 - Communication parameters
 - Application Objects
 - Mapping parameters
- 2) Save the new node configuration in DCF (YOURNODE.dcf) format and export it as ROM image txt file (*yourdesign.txt*). Only ROM image and VHDL files can hols the entire CCIPC instance information
- Use the edac_rom program to convert ROM_image into EDAC protected numeric format. The ROM_edac program is a C-function that generates an output file containing the EDAC protected image of the input ROM image.

To compile the program use the following command:

- > gcc -o edac_rom edac_rom.c -lm
- To execute the program type the following command:

> edac_rom yourdesign.txt yourdesign_edac.dat 0

- 4) Copy yourdesign_edac.dat in your SIM directory replacing the dcf.dat file:
 - > cp yourdesign_edac.dat YourSIM/dcf.dat
- 5) Copy CCIPC_CONF.vhdl VHDL package file in the SRC directory
- 6) If you selected Direct I/O interface copy COM_ROM.vhd, IDX_ROM.vhd, MAP_AO_ITF.vhd files also.

After these steps the new core instance is ready for further simulation, synthesis and fitting design tasks.

11.1 ROM IMAGE FILE

The CCIPC ROM image file holds the default image of the CANOPEN Node object dictionary and the internal index tables utilized by CCIPC to address the implementation specific application objects. Information is encoded in a verbose textual (*YOURNODE.txt*) format:

- In each line the first 2 hexadecimal strings are interpreted as byte address and memory location content in a 32 bit word aligned arrangement
- "#" indicates the begin of a single line comment
- Constant string indicates the insertion of a VHDL configuration line.

The *edac_rom* program translates the ROM.txt file in the effective memory image file pruning comment/ VHDL lines and adding EDAC protection to 32 bit word data.

The ROM image file is composed of the following sections:

- ROM/RAM Pointers Section. The pointers values needed to manage the rest of the ROM image file
- Configuration area OD entries values. A copy of the VHDL CCIPC_Conf.vhd file needed to initialize the configuration area objects
- Index Table. Core specific memory pointer to application objects indexes
- Sub-index Table Core specific memory pointer to application objects sub-indexes
- PDO mapping parameters. Mapping parameters values for each PDO
- PDO communication parameters. Communication parameters values for each PDO
- Application Objects Initialize Values. Default (initialize) values for the application objects

11.2 VHDL Configuration File

The VHDL package configuration collects the VHDL constants used to configure the main aspects of the CCIPC Core like interface/technology and the default values of its configuration area objects.

The following constants are defined in the configuration file:

- HOSI: it defines the HOST interface between:
 - o GENERIC_ITF: constant value for Generic IO HOST interface
 - AMBA_AHB: constant value for AMBA HOST interface
 - DIRECT_IO: constant value for DIRECT HOST interface
- TARGET_DEV: it defines the CCIPC core target technology:
 - o AXCELERATOR: constant value for Microsemi Axcelerator device
 - PROASIC3: constant value for Microsemi Proasic device
 - VIRTEX: constant value for Xilinx Virtex device
 - GENERIC_TECH: constant for technology independent memory model
- SDO_FUNCTION

SITAEL

- SDO_EXP_EN: SDO expedited service enable
- SDO_SEG_EN: SDO expedited and segmented enable
- SDO_BLOCK_EN: SDO expedited and block enable
- NODE_COUNT: number of supported Node
- PDO_IRQCNT: maximum number of R(T)PDO IRQ supported
- PDO_IRQIDX: number of bit used to select R(T)PDO IRQ line (log₂(PDO_IRQCNT));
- NODEID: CCIPC node ID. This value is used only in simulation mode. During real mode this value is triggerd using the dedicated external pins. (Index:2002h, SubIndex:01h)
- NODEMASK: CCIPC node mask. Tthis value is used only in simulation mode. During real mode this value is triggerd using the dedicated external pins(Index:2002h, SubIndex:02h).
- DEV_TYPE: Device type constant (Index: 1000h)
- ERR_REG: error register default value (Index: 1001h)
- ID_SYNCH: Synch Object COB-ID constant value (Index: 1005h)
- SYNCH_WLEN: default value of synchronous windows length (Index: 1007h)
- MSTID_CONSHB: constant value of Heartbeat consumer time (index:1016h):
 - MST_NODEID: it defines the Node-ID of the Master
 - CONS_HB: it defines the value of the heartbeat time
- PROD_HB: constant value of Heartbeat producer time (index: 1017h)
- VENDOR_ID: constant value of the Vendor ID (index:1018h, SubIndex:01h)
- PRODUCT_CODE: constant value of the Product Code (index:1018h, SubIndex:02h)
- REV_NUM: constant value of the Revision number (index:1018h, SubIndex:03h)
- SERIAL_NUM: constant value of the Serial number (index:1018h, SubIndex:04h)
- CS_SDO_ID: constant value of the SDO Client-Server COB-ID (index:1200h, Sub-Index:01h)
- SC_SDO_ID: constant value of the SDO Server-Client COB-ID (index:1200h, Sub-Index:02h)
- B_DEF: constant value of Default bus parameter (index:2000h, Sub-Index:01h)
- T_TOGGLE: constant value of Ttoggle parameter (index:2000h, Sub-Index:02h)
- N_TOGGLE: constant value of Ntoggle parameter (index:2000h, Sub-Index:03h)

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

- HuCANe_Cfg: default value of the HurriCANe configuration (Index:2003h, Sub-Index:01h)
 - RSJ_VAL: RSJ default value
 - PS2_VAL: PS2 default value
 - PS1_VAL: PS1 default value
 - BPR_VAL: BPR default value
- CCIPC_ST: default value of the CCIPC status register (Index:2003h, Sub-Index:02h
 - AUTO_OP: defines the possibility of the CCIPC to enter automatically in Operational state at the end of the initialization phase
- EDAC_REG_VAL: define the default value of the EDAC Controller register (Index:2003h, Sub-Index:07h)
- MAX_TPDO: defines the maximum number of TPDO supported by CCIPC
- MAX_RPDO: defines the maximum number of RPDO supported by CCIPC
- MAX_ROAO: defines the maximum number of read only AOs supported by CCIPC
- MAX_RWDO: defines the maximum number of read write AOs supported by CCIPC
- MAX_SRPDO: length of Synch message queue

11.3 CCIPC GUI

This section contains instructions concerning the usage of CCIPC Configuration tool. The CCIPC GUI leads the user to define a specific Object Dictionary layout.

To launch the CCIPC core configuration tool set the following environment variable (for example with cshell).

- setenv CCIPC_ROOT YOUR+CCIPC_DATABASE_PATH
- set path = (\$path CCIPC_ROOT/SIM_SCRIPT CCIPC_ROOT/CONFIG_TOOL)
- Then type the command:
- CCIPC_gui.pl

The following naming rules have to be observed to correctly use the CCIPC GUI:

- Only letters [A-Z, a-z], numbers [0-9] and underscore[_] are accepted;
- First character of each name has to be a letter[A-Z, a-z];
- Space [] are interpreted as name delimiter and should be never used in CCIPC GUI forms;

SCIPC configuration V2	.0_5.1
<u>File Others</u>	<u>H</u> elp
SITAEL	CCIPC BaseNodeID 100 NodeCount 1
CCIPC Set Up Configuration Object	Communication Object Application Object
CCIPC Host Interface GENERIC_ITF Target Technology AXCELERATOR SDO Type EXPEDITED Update Comm par BaseNodeID 100	★ AutoOp 0 ★ ★
NodeCount 1 生	Update ROM/RAM Pointers
Max RPDO Max TPDO	Index Table Lenght Mapping ROM Base
Max rw AO Max ro AO	Mapping RAM Base 0 Map Table Lenght
	Communication ROM Base Communication Table Lenght
	App Objects ROM Base App Objects RAM Base 0
	App Objects Table Lenght

Fig. 11-1: CCIPC GUI.

The main window is composed of four tabs:

- > CCIPC Set Up window that allows setting the main CAN and CANOpen parameters;
- > Configuration Object window allows setting the parameters available in the Configuration Area;
- Communication Object window allows define the RPDO and TPDO communication and mapping parameters;
- > Application Object window allows defining the Application Object for the node

The File menu is composed of the following options:

- Open: open a DCF file
- Save: save the current Object Dictionary layout in a DCF format
- Import: create the Object Dictionary layout reading the ROM image file (.txt)
- Export: create the ROM image file(.txt) of the actual Object Dictionary layout and the CCIPC VHDL configuration file.

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

11.4 CCIPC Set Up Window

The first step to edit the Object Dictionary structure is to define the general CCIPC core parameters using the dedicated CCIPC Set Up window.

😣 🚍 🗉 CCIPC configuration V2.0_5.1						
<u>File O</u> thers	<u>H</u> elp					
SITAEL	CCIPC BaseNodeID 100 NodeCount 1					
CCIPC Set Up Configuration Object C	communication Object Application Object					
CCIPC Host Interface GENERIC_ITF Target Technology AXCELERATOR SDO Type EXPEDITED Update Comm par BaseNodeID 100	▲ AutoOp 0 ▲ ▲					
	Undate ROM/RAM Pointers					
	Index Table ROM Base					
Max RPDO Max TPDO Max rw AO Max ro AO	Index Table Lenght Mapping ROM Base Mapping RAM Base 0 Map Table Lenght					
	Communication ROM Base					
	App Objects ROM Base					
	App Objects RAM Base 0					
	App Objects Table Lenght					

The CCIPC Host Interface scroll bar allows selecting the core Host Interface between:

- Generic I/O interface
- AMBA interface
- DIRECT interface

The Target Technology scroll bar allows selecting the CCIPC technology implementation of the RAM modules between:

- Axcelerator
- ProAsic
- Virtex
- Generic

The SDO type scroll bar allows defining SDO services supported by CCIPC between:

- Expedited
- Segmented

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Block

The SDO Expedited service is active also when Segmented or Block service is selected. The CAN Bus transfer rate parameters can be defined through the following section:

Fig. 11-2: Frequency setting.

The CAN core RSJ,PS2,PS1 and BPR parameters are automatically calculated by the GUI once the system frequency and the CAN bit Rate values are entered.

Fig. 11-3: Node ID setting.

The CCIPC Node parameters are used to define the Base Node ID and Node count of the CCIPC core and these are used to automatically generate the default values of the OD entries dependent on the Node ID. The Node count value can be selected between 1,2,4,8,16 and 32 predefined values.

Because of the CCIPC core Node ID is also defined using dedicated external pins, it's recommended that the selected GUI values reflect the external configuration.

The **AutoOp** option defines the behaviour of the Network Management state machine at the end of the Initialisation phase:

- '1' means that CCIPC core enters in Operational State
- '0' means that CCIPC core enters in Pre-Operational State

The **Update Comm par** button, when pressed, creates a default OD structure, updating the Configuration and the Communication Objects using the information defined in this window.

The CCIPC external and internal memory organization of the core is available in the bottom right side of the window ant it contains the following information:

- ROM base address
- Index table word length
- Communication, Mapping and Application Object ROM and RAM base address and word length

Update ROM/RAM Pointers	
Index Table ROM Base	48
Index Table Lenght	11
Mapping ROM Base	92
Mapping RAM Base	0
Map Table Lenght	144
Communication ROM Base	668
Communication Table Lenght	72
App Objects ROM Base	956
App Objects RAM Base	576
App Objects Table Lenght	271

Fig. 11-4: CCIPC memory settings.

Information about the maximum index defined for RPDO, TPDO, RW and RO Application Objects are also visible in the window.

Max RPDO	1407
Max TPDO	1807
Max rw AO	6005
Max ro AO	

Fig. 11-5: Communication and Application Object settings.

11.5 Configuration Object Window

The Configuration Object window, illustrated in Fig. 11-6, allows setting the OD entries defined in the Configuration area and reported in Tab. 10-2 of §10.1.

😣 — 💷 CCIPC configu	Iration			
<u>File</u> <u>O</u> thers				<u>H</u> elp
SITAEL		CCIPC Base	NodelD 0 Nod	leCount 8
CCIPC Set Up Configuration	n Object Communication	Object Applica	tion Object	
Configuration	Dbjects		Edit Var	
1000 VAR_U3 1001 VAR_U3 1005 VAR_U3 1007 VAR_U3 1016 ARRAY_ 1017 VAR_U10 1018 RECORD 1200 RECORD 2002 RECORD 2003 RECORD	 N:Device_Type V:0x0 N:Error_Register V:0x0 N:COB_ID_synch V:0x80 N:Synchronous_Windows U8 N:Consumer_Heartbeat_5 N:Producer_Heartbeat_Ti N:Identity_Object S:5 N:SDO_Server S:3 N:RedundancyManager S:5 N:NodeParameters S:3 N:CCIPC_StatusConf S:8 	_length V:0x8000 _Time S:2 me V:0x5 &		
Load SubIndexe	s Subindex Table	1000	Edit SubIndex	

Each object value can be modified using the **Edit Var** or **Edit Subindex** button. To modify a VAR object, select the specific Object and press the **Edit Var** button.

Edit	entry	_ • ×
1003		
VAR_U32		
Synchronou	s_Windows_le	ength
Value	0x8000	
Cancel	ок	:

Fig. 11-7: Edit Var window.

Index	SubIndex	Register Name	Obj Type	Default val	Note
1000h		Device Type	VAR_U32	0	Don't edit
1001h		Error register	VAR_U8	0	Don't edit
		COB-ID synch	VAR_U32	80h	Don't edit. The ID of the
1005h					synch message must be
					constant to 80h
1007h		Synchronous	VAR_U32	0	
		Window length			D * *
	Üh	Heartbeat	08	1	Don't edit
1016h	41	consumer time	1100		
	1 n	Master Consumer	032	0	
		Realtbeat time	1116	0	
1017h		time	016	0	
	0h	Identity object	U8	4	Don't edit
	1h	Vendor-ID	U32	0	Don't edit
1018h	2h	Product code	U32	0	Don't edit
	3h	Revision number	U32	0	Don't edit
	4h	Serial Number	U32	0	Don't edit
	0h	Server SDO	U8	2	Don't edit
	1h	COB-ID client-	U32		
1200h		server			
	2h	COB-ID server-	U32		
		client			
	0h	Redundancy	U8	4	Don't edit
		Management		-	
2000h	<u>1h</u>	Bdefault	U8	0	
	2h	Ttoggle	U8	0	
	3h	Ntoggle	U8	0	
	4h	Ctoggle	U8	0	
	0h	Node parameters	U8	2	Don't edit
2002h	1h	ID base	U8	0	
	2h	ID mask	U8	0	
	Uh	CCIPC status &	08	1	Don't edit
00001		configuration			
2003n	n	HUITICANE	032	U	
		configuration		1	

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Index	SubIndex	Register Name	Obj Type	Default val	Note
	2h	HurriCANe &	U32	0	
		CCIPC status			
	3h	CCIPC-SDO error	U32	0	
	4h	IRQ status	U32	0	
	5h	IRQ mask-clear	U32	0	
	6h	RPDO IRQ0	U32	0	
	7h	RPDO IRQ1	U32	0	
	8h	RPDO IRQ2	U32	0	
	9h	RPDO IRQ3	U32	0	
	Ah	TPDO IRQ0	U32	0	
	Bh	TPDO IRQ1	U32	0	
	Ch	TPDO IRQ2	U32	0	
	Dh	TPDO IRQ3	U32	0	
	Eh	EDAC error	U32	0	
	Fh	TPDO trig	U32	0	
	10h	SDO multiplexor	U32	0	

Tab. 11-1 List of Configuration Object.

In the value field, enter the new object value and press **OK** to update it.

To modify an Array or Record entry type, select the specific object and press **Load Subindex** button. In the lower window all the sub-indexes defined for the object are displayed. To modify the single sub-index, select it and click on the Edit Subindex button.

In the value field, enter the new object value and press **OK** to update it.

11.6 Application Object

The Application Object window, shown in Fig. 11-8, allows setting the CCIPC core Application Objects.

	CCII	PC configur	ation		_ – X
<u>F</u> ile <u>O</u> thers					<u>H</u> elp
SI	TAEL OSPACE	С	CIPC Base	eNodeID 2 N	odeCount 2
CCIPC Set Up	Configuration Object	Communic	ation Object	Application Obje	ct
Application Ob	jects		Add Index	Delete Index	Edit Var
6000 ARRAY_U 6001 ARRAY_U 6002 ARRAY_U 6003 ARRAY_U 6004 RECORD 6005 ARRAY_U	J32 N:NewObject S:3 J8 N:NewObject S:9 J16 N:NewObject S:6 J16 N:NewObject S:5 N:NewObject S:5 J32 N:NewObject S:255				
Load SubIndex	Subindex Table 60	003	Add SubIndex	Delete SubIndex	Edit SubIndex
6003sub0 U8 1 6003sub1 U16 6003sub2 U16 6003sub3 U16 6003sub4 U16	V:NrOfEntries V:0x4 N: V:0xd1d0 N: V:0xd3d2 N: V:0xd5d4 N: V:0xd7d6				

Fig. 11-8: Application Object window.

To insert a new Application Objects click on **Add Index** button.

Add new /	A0 _ 🗆 🗙
Index	6000
Type VAR_U8	<u>±</u>
Subindex Count	1
Name	NewObject
Default Value	0
Cancel	ок

Fig. 11-9: New AO Index definition.

File name: CAS-CCIPC-DTS-0001.doc

In the new window the following parameters can be set:

- Index: it defines the Index value for the new AO
- Type: it defined the AO type. This field can be:
 - VAR_U8
 - VAR_U16
 - VAR_U32
 - RECORD
 - ARRAY_U8
 - o ARRAY_U16
 - o ARRAY_U32
- SubIndex Count: number of sub-indexes supported by the entry.
 - Name : name of the entry.
- Default value: reset value.

Press **OK** button to accept the Index settings.

If Index is Array or Record type, next step is to define each sub-index that composes the entry.

Select the desired Index and click on **Load SubIndexes** button to load the entry structure. To edit a single sub-index, select it and click on **Edit SubIndex**. To add a new sub-index click on **Add SubIndex** button.

The Sub-index0 value is automatically updated every time a new sub-index is defined.

The characteristic of the opened window depends on the HOST interface selected in the Configuration Object window.

The Fig. 11-10 shows the window in case of Generic I/O or AMBA interface. The sub-index parameters are:

- Type: it defines the sub-index data type between:
 - o U8
 - o U16
 - o U32
- Name : it defines the name of the sub-index.
- Value : it defines the reset value
- ٠

Edit	entry _ 🗆 🗙
6000 sub 1	
Name	Last_Entry1
Value	0
Cancel	ок

Fig. 11-10: AMBA-Generic I/O AO sub-index definition.

If DIRECT interface is selected the window that appears is shown in the figure below

Edit	entry	_
6000 sub 1		
Type U8		±
Name	Last_Entry	/1
Value	0	
Port Assignr	nent OutDFF	Ŧ
Cancel	0	ж

Fig. 11-11: Direct - AO sub-index definition.

The **Port Assignment** field defines how the AO is defined in the port mapping. The following type are available:

- OutDFF: it defines a Dflip-flop output port
- InDFF: it defines a Dflip-flop input port
- InOutDFF: it defines a bidirectional Dflip-flop port

11.7 Communication Object

The Communication Object Window, shown in Fig. 11-12, allows defining the Communication and Mapping parameters for each RPDO and TPDO.

When a new OD structure has been defined, all the RPDO and TPDO are configured in not existing mode and no mapping parameter is defined.

CCIPC configuration	_ – ×
<u>File</u> <u>O</u> thers	<u>H</u> elp
SITAEL CCIPC BaseNodeID 2	NodeCount 2
CCIPC Set Up Configuration Object Communication Object Application O	Dbject
B/T PDO	
Communication Parameters 0x0000	Edit ComPar
Mension Recomplete 0x0000	
Mapping Parameters 0x0000 Add MapPar Delete MapPar	Edit MapPar

Fig. 11-12: Communication Object window.

The **R/T PDO** scroll bar lists all the RPDO and TPDO that are supported by the CCIPC core. To modify a specific RPDO object, select it from the scroll bar menu. In the two text areas below the Communication and Mapping parameters values are displayed.

	CCIP	C configuration		_ - ×
<u>F</u> ile <u>O</u> thers				<u>H</u> elp
SI	TAEL OSPACE	CCIPC	BaseNodeID 2	NodeCount 2
CCIPC Set Up	Configuration Object	Communication Obje	ct Application (Object
R/T PDO 14	100 RECORD Receive_PDO	_Communication_Para	meter_0 S:6	±
Communica	ation Parameters 0x1400			Edit ComPar
1400sub1 U 1400sub2 U	J32 COB-ID V:0x8000020 J8 N:TransmissionType	02 V:255		
Mapping Pa	rameters 0x1600	Add MapPar	Delete MapPar	Edit MapPar

Fig. 11-13: RPDO settings.

The Communication parameters fields are:

- COB-ID: define the RPDO COB-ID. Modify only the last bit (31) of this field in order to select if the RPDO exists or not.. The ID part of the field (bit 10 to 0) doesn't affect the behaviour of the CCIPC core because it works with the default COB-ID assignment and using the external Node-ID information;
- **Transmission Type**: it defines the RPDO transmission type. Asynchronous RPDOs must be indicated with 0xFF(255) value. Other values are for synchronous RPDO.

To configure new mapping parameters, press the Add MapPar button.

For the SubIndex0, no value(V field) has to be inserted because this value is automatically updated when new sub-indexes are defined. Only the sub-index name (N field) can be modified.

SITAEL	CCIPC - Data Sheet	Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 98 of 113
	Edit MapPar _ 🗆 🗙	
	1600sub0 N MapObjFI_0 V 0	

Cancel

Fig. 11-14: Mapping Parameter - Subindex0.

ок

For other sub-indexes, the definition of the mapped Application Objects has done using the scroll bar menu which lists all the available Application Objects, as shown in Fig. 11-15. To define a new Application Objects see §11.6.

Edit	MapPar .	- • ×
1600sub1		
N	MapObjFI1	
V.Index	6000	±
V.Subindex	6000sub0x01	±
v	0x6000012	20
Cancel	ок	

Fig. 11-15: RPDO Mapping parameter definition.

The **V.Index** allows selecting the mapping Index between the available AO Index, while the **V.SubIndex** lists all the sub-indexes supported by the selected Index.

The actual mapping value is shown in the V field.

To modify a specific TPDO object, select it from the scroll bar menu. In the two text areas below the Communication and Mapping parameters values are displayed.

CCIPC co	onfiguration		_
<u>F</u> ile <u>O</u> thers			<u>H</u> elp
SITAEL	CCIPC	BaseNodeID 2	NodeCount 2
CCIPC Set Up Configuration Object Con	nmunication Obje	ct Application (Object
R/T PDO 1800 RECORD Transmit_PDO_Co	ommunication_Para	meter_0 S:6	Ŧ
Communication Parameters 0x1800			Edit ComPar
1800sub1 032 COB-ID V:0x80000182 1800sub2 U8 N:TransmissionType V:25 1800sub3 U16 N:Inhibit_Time V:0 1800sub4 U8 N:Compatibility_Entry V:0 1800sub5 U16 N:EventTimer V:0	5		
Mapping Parameters 0x1A00	Add MapPar	Delete MapPar	Edit MapPar

Fig. 11-16: TPDO settings.

The Communication parameters fields are:

- COB-ID: define the TPDO COB-ID. Modify only the last bit(31) of this field in order to select if the TPDO exists or not.
- **Transmission Type**: it defines the TPDO transmission type. Asynchronous TPDOs must be indicated with 0xFF(255) value. Other values are for synchronous TPDO.
- Inhibit Time: it defines the inhibit time as multiple of 100us for the TPDO. Because the CCIPC updates this value every 1ms, insert a value with this granularity. For inhibit time of 2ms, insert 0x14 (2ms/100us=20).
- Event Timer; it defines the TPDO event time as multiple of 1ms.
- To configure new mapping parameters, press the **Add MapPar** button.

For the SubIndex0, no value(V field) has to be inserted because this value is automatically updated when new sub-indexes are defined. Only the sub-index name (N field) can be modified.

SITAEL	CCIPC - Data Sheet	Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 100 of 113
	Edit MapPar _ 🗆 🗙	
	1600sub0 N MapObjFI_0 V 0 Cancel OK	

Fig. 11-17: Mapping Parameter - Subindex0.

For other sub-indexes, the definition of the mapped Application Objects has done using the scroll bar menu, which lists all the available Application Objects. To define a new Application Objects see §11.6.

Edit	MapPar _ 🗆 🗙
1 4 00sub1	
N	MapObjFl1
V.Index	6001 ARRAY_U8
V.Subindex	6001sub3 U8 N: \ 🛨
v	0x60010308
Cancel	ок

The **V.Index** allows selecting the mapping Index between the available AO Index, while the **V.SubIndex** lists all the sub-indexes supported by the selected Index. The actual mapping value is shown in the **V** field.

12 CCIPC RESOURCE OCCUPATION

In this paragraph, the synthesis reports for different CCIPC configuration and FPGA technologies are reported. The results are obtained with the following CCIPC configuration:

- 2 Node-Id supported;
- 8 RPDOs and 8 TPDOs;
- 6 Application Objects:
 - Array of U32 with 2 sub-indexes;
 - Array of U8 with 8 sub-indexes;
 - Array of U16 with 5 sub-indexes;
 - Record with 4 sub-indexes;
 - Array of U32 with 254 sub-indexes;
- Consumer Heartbeat Time = 4ms;
- Producer Heartbeat Time = 255ms;
- Ttoggle = 255;
- Ntoggle = 2;

The following table reports the number of internal FPGA RAM modules (512x8 bits) used by CCIPC. The occupation of the Communication Parameter Table module (Comm Table) depends on the number of node supported that determines the number of RPDO and TPDO that have to be instantiated.

Node Count	Modules	Tot				
	MsgIn	MsgOut	Comm	Index	Mem RF	
	queue	queue	lable	I able		
1	1	1	5(*)	5(*)	5(*)	17
2	1	1	5(*)	5(*)	5(*)	17
4	1	1	5(*)	5(*)	5(*)	17
8	1	1	5(*)	5(*)	5(*)	17
16	1	1	10(**)	10(**)	5(*)	27
32	1	1	15(***)	10(**)	5(*)	32
(*) 4*(512*8) = 512*32 of data + 512*8 of EDAC						
(**) 2*(4*(512*8)) = 1024*3	32 of data +	2*(512*8)=	1024*8 of I	EDAC	
(***)3*(4*(512*8	3)) = 1536*3	32 of data +	- 3*(512*8)=	=1536*8 of	EDAC	

Tab. 12-1 CCIPC RAM ocuupation

For Xilinx device *Combinational* field refers to Number of 4 input LUTs, *Sequential* field refers to Number of Slice Flip Flops and *Total* field refers to total number of slices occupied.

Tables Tab. 12-2, Tab. 12-3 and Tab. 12-4 furnish synthesis reports of CCIPC in its Generic interface when Segmented, Block and Expedited SDO are activated.

Fomily	Dovice		Cells		Litilization	Fmax	
ганиу	Device	Combinational	Sequential	Total	RAW	Ounzation	(MHz)
Axcelerator	RTAX1000S	7807	1775	9582	17	52.8%	19.9
ProAsic	A3PE3000	12785	1779	14564	17	19.35%	20.9
Xilinx	XC4VLX25	7106	1701	3930	17	36%	34.2

Tab. 12-2: CCIPC Segmented - Area Occupation.

|--|

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 102 of 113

		Combinational	Sequential	Total			(MHz)
Axcelerator	RTAX1000S	7823	1785	9608	17	52.95%	19
ProAsic	A3PE3000	13216	1772	14988	17	19.91%	20.7
Xilinx	XC4VLX25	7203	1702	3976	17	36%	31.8

Tab. 12-3: CCIPC Block - Area Occupation.

Family	Dovico		DAM	Litilization	Fmax		
Family	Device	Combinational	Sequential	Total	T.AIVI	Ounzation	(MHz)
Axcelerator	RTAX1000S	7493	1764	9257	17	51.02%	21
ProAsic	A3PE3000	12320	1782	14102	17	18.74%	19.6
Xilinx	XC4VLX25	6747	1699	3749	17	34%	34.2

Tab. 12-4: CCIPC Expedited - Area Occupation.

Table Tab. 12-5 furnishes synthesis reports of CCIPC in its AMBA configuration when SDO Block is selected.

Family	Device		RAM	Litilization	Fmax		
i anny	Device	Combinational	Sequential	Total		Ounzation	(MHz)
Axcelerator	RTAX1000S	8182	2174	10356	17	57%	17.9
ProAsic	A3PE3000	13480	2223	15703	17	20.8%	19.4
Xilinx	XC4VLX25	7273	1686	4053	17	37%	29.8

Tah	12-5.	CCIPC	ΔMRΔ	Block	- Area	Оссии	nation
Tab.	12-0.			DIOCK	- Alca	Occu	pation.

Next table furnishes synthesis reports of CCIPC in its Direct configuration. The results are obtained with the following CCIPC configuration:

- 1 Node-Id supported;
- 4 RPDOs and 4 TPDOs;
- 1 Application Objects with 3 sub-indexes of U32:
 - 2 defined as Output;
 - 1 defined as Input
- Consumer Heartbeat Time = 100ms;
- Producer Heartbeat Time = 100ms;
- Ttoggle = 3;
- Ntoggle = 3;

Family	Dovice			Litilization	Fmax		
Ганиу	Device	Combinational	Sequential	Total	RAW	Ullization	(MHz)
Axcelerator	RTAX1000S	7112	1720	8832	7	48.6%	19.9
ProAsic	A3PE3000	11703	1762	13465	7	17.89%	20.05
Xilinx	XC4VLX25	6420	1623	3585	7	33%	34

Tab. 12-6: CCIPC Direct- Area Occupation.

13 CCIPC TIMING CHARACTERISTICS

The CCIPC timings characterization is reported in next tables and it gives an estimation of elaboration time in terms of clock cycles of the main CANopen features.

All the timings are characterized without considering congestions on CAN network and performing one task at time avoiding any processing delays at CCIPC system level.

The CCIPC presents an internal scheduler that activates the elaboration of the main CANopen services with the following priorities:

- Asynchronous Event trigger TPDO → high priority;
- SDO requests, asynchronous RPDO and SYNC routine (Synchronous PDOs);
- SDO Block Upload;
- Asynchronous Timer Driven TPDO \rightarrow low priority.

When CCIPC is elaborating a task the others have to wait until the end of scheduled task causing a possible delay on expected elaboration time.

All timing values are measured using a 16 MHz clock frequency.

Application Objects Elaboration time

The following table reports the elaboration of the three types of Application Objects (U8, U16 and U32) associated to RPDO, TPDO and SDO services.

PDOs elaboration time includes both decoding of mapping parameter and memory access, while SDO elaboration time reports only memory access time.

Parameters		Elaboration time	Note
PDO - Read U8	T _{PrdU8}	204	Time to read any U8 AO
PDO - Read U16	T _{PrdU16}	280	Time to read any U16 AO
PDO - Read U32	T _{PrdU32}	416	Time to read any U32 AO
PDO – Write U8	T _{PwrU8}	233	Time to write any U8 AO
PDO – Write U16	T _{PwrU16}	328	Time to write any U16 AO
PDO – Write U32	T _{PwrU32}	498	Time to write any U32 AO
SDO – Read U8	T _{Srd}	62	Time to read single byte
SDO – Write U8	T _{Swr}	86	Time to write single byte

SDO timings are affected by the value of the Index and Sub-Index multiplexor fields. The following two parameters report the time needed to point correct Index and Sub-Index.

Parameters		Elaboration time	Note
SDO – Index Pointer	T _{idx}	I*36	Time to point correct Index
SDO – Sub-Index Pointer	T _{sidx}	S*54	Time to point correct Sub-Index
I = ((Index-0x6000)+1) if index	is in the Rea	d-Write area;	
I = ((Index-0x7000)+1) if index	is in the Rea	d-Only area;	

S = Sub-Index

Heartbeat time

Parameters	Elab. time	Note
Heartbeat producer (HBP) * 1ms		CCIPC guarantees the correct management of Heartbeat
		producer time with granularity of 1ms.
Heartbeat consumer	[HBC*1ms-1ms:	The reception of Heartbeat resets the Heartbeat Consumer
counter reset	HBC*1ms]	timer.
		In the worst case the mismatch between the expected
		Heartbeat expiration and the real Heartbeat expiration is 1ms
		at maximum.

File name: CAS-CCIPC-DTS-0001.doc

Synchronous TPDO

CCIPC scans all available TPDOs during elaboration of Synchronous TPDO. Each TPDO is characterized by four parameters:

- COB-ID;
- Transmission type
- Inhibit Time (not supported for Synchronous TPDO)
- Event Time (not supported for Synchronous TPDO)

Parameters		Elaboration time	Note
COB-ID	T _{id}	26	Time to check TPDO COB-ID
Transmission type	T _{trx}	32	Time to check TPDO Transmission type
			(including the update of synchronous counter)
Inhibit time	T _{inh}	NA	NA
Event time	T _{evn}	NA	NA
TPDO with 3 mapping	g (1*U8, ⁻	1*U16, 1*U32)	
$T_{tot} = T_{id} + T_{trx} + T_{PRd}$	U8 + T _{PRdl}	$U_{16} + T_{PRdU32} + T_{elab} = 26 + 100$	-32+204+280+416+150=1108

When a Synch message is received, the CCIPC elaborates received Synchronous RPDOs before processing the TPDO ones.

Synchronous RPDO

Parameters		Elaboration time	Note
Read Message	T _{msq}	146	Time to read message form Synch queue
Length check	T _{lck}	43	Time to check RPDO vs CAN message byte length
ASynch RPDO with 3	mapping	(1*U8, 1*U16, 1*U32)	
$T_{tot} = T_{msg} + T_{lck} + T_{PW}$	118 + Tewr	$116 + T_{Pwr} + T_{elab} = 146$	6+43+233+328+498+50=1298

Synchronous Window lenhght

CCIPC guarantees the expiration of Synchronous Window length according to value defined in correspondent Object Dictionary entry (1007h).

The indication of synchronous elaboration error (synchronous RPDO or TPDO not managed) is available on the Host interface (IRQ[2]) when synchronous elaboration phase is completed.

Timer Driven Asynchronous TPDO

CCIPC scans all available TPDOs during elaboration of Timer driven Asynchronous TPDO. Each TPDO is characterized by four parameters:

- COB-ID;
- Transmission type
- Inhibit Time
- Event Time

Parameters		Elaboration time	Note
COB-ID	T _{id}	26	Time to elaborate an invalid TPDO
Transmission type	T _{trx}	32	Time to elaborate a TPDO defined as
			Synchronous
Inhibit time	T _{inh}	65	Time to elaborate the Inhibit Time
Event time	T _{evn}	99	Time to elaborate the Event Time
TPDO with 3 mapping	ı (1*U8, 1	*U16, 1*U32):	
$T_{tot} = T_{id} + T_{trx} + T_{inh} +$	- T _{evn} + T	PRdU8 + TPRdU16 + TPRdU32 +	- T _{elab} = 26+32+65+99+204+280+416+120=1242

Event Driven Asynchronous TPDO

To elaboration Event driven Asynchronous TPDO, CCIPC has to valuate:

COB-ID;

File name: CAS-CCIPC-DTS-0001.doc

- Transmission type
- Inhibit Time

• Update Event Timer (if supported)

In next table the elaboration time of each parameters is indicated:

Parameters		Elaboration time	Note
COB-ID	T _{id}	26	Time to check TPDO COB-ID
Transmission type	T _{trx}	32	Time to check TPDO Transmission type
Inhibit time	T _{inh}	50	Time to elaborate the Inhibit Time
Event Time	T _{evn}	99 (40)	Time to control and reset event time (event timer not supported).
TPDO with 3 mapping	i (1*U8, 1	*U16, 1*U32):	
$T_{tot} = T_{id} + T_{trx} + T_{inh} +$	· T _{evn} + T	PRdU8 + T _{PRdU16} + T _{PRdU32} -	+ T _{elab} = 26+32+50+99+204+280+416+120=1168

Asynchronous RPDO

Parameters		Elaboration time	Note
Read Message	T _{msq}	75	Time to read message form queue
COB-ID	T _{id}	26	Time to check RPDO COB-ID
Transmission type	T _{trx}	32	Time to check RPDO transmission type
Length check	T _{lck}	43	Time to check RPDO vs CAN message byte
			length
ASynch RPDO with 3	mapping	(1*U8, 1*U16, 1*U32)	
$T_{tot} = T_{msg} + T_{id} + T_{trx}$	+ T _{lck} + T	$_{PWrU8} + T_{PwrU16} + T_{PwrU32} +$	+ T _{elab} = 75+26+32+43+233+328+498+50=1285

SDO Expedited

Parameters		Elaboration time	Note
SDO Download -	T _{Delab}	1063	SDO Download Expedited elaboration time
Elaboration Time			
SDO Upload –	T _{Uelab}	900	SDO upload Expedited elaboration time
Elaboration Time			
Download Index IDX,	Sub-Inde	x S , U32:	
$Ttot = T_{idx} + T_{sidx} + 4^*$	T _{WrB} + T _{De}	$_{\text{elab}} = I^* \ 36 + S^* 54 + 4^* 86$	+ 1063 = 1406 + I* 36 + S*54
Upload Index Idx, Sul	b-Index S	, U32:	
$Ttot = I^* T_{idx} + S^* T_{sidx}$	+ 4*T _{RdB} ·	+ T _{Uelab} = I* 36 + S*54 + 4	↓*62 + 900 = 1148 + I* 36 + S*54

As shown in table above the SDO expedited elaboration time is mainly affected by the check of received packet rather than data processing.

SDO Download Segmented

Parameters		Elaboration time	Note
Initiate request	T _{SDwIn}	$1086 + T_{idx} + T_{sidx}$	Elaboration of Initiate Download request
Download request	T _{SDw}	871 + n* T _{Swr}	Elaboration of Download request (n byte)

SDO Upload Segmented

Parameters		Elaboration time	Note
Initiate request	T _{SUpIn}	$1120 + T_{idx} + T_{sidx}$	Elaboration of Initiate Upload request
Upload request	T _{SUp}	1032 + n*T _{Swr}	Elaboration of Upload request (n byte)

SDO Download Block

Parameters		Elaboration time	Note
Initiate request	T _{BDwIn_min}	$= T_{elab} + T_{idx} + T_{sidx}$ $T_{elab} = 1218$	Elaboration of Initiate Download request if Entry size is greater than 889 byte (127 segment threshold). Block size is set to 127.

File name: CAS-CCIPC-DTS-0001.doc

SITAEL

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 106 of 113

Parameters		Elaboration time	Note				
	T _{BDwIn_max}	= T _{elab} + T _{idx} + T _{sidx} + T _{blksize} ;	Elaboration of Initiate Download request if Entry size is less than 889 byte (127 segment				
			threshold).				
		T _{elab} = 1218	Timing value is affected by time requested to				
		T _{blksize} = (size/7)*348	calculate correct Block size.				
Download Segment request	T _{BDw}	$= T_{elab} + 7^{*}(T_{Swr} + T_{upd})$	Elaboration of Download request (7 byte)				
-		T _{elab} = 160					
		$T_{upd} = 42$					
Download Segment	T _{BDwR}	$= T_{elab} + n^*(T_{Swr} + T_{upd})$	Elaboration of Last segment of a block. If last				
response			segment has been received with n byte.				
		T _{elab} = 267					
		$T_{upd} = 42$					
	T _{BDwLBlk}	$= T_{elab} + 7^{*}(T_{Swr} + T_{upd})$	Elaboration of Last segment of a block. If				
		+ T _{blksize} ;	another block has to be received.				
		T 1010	Timing value is affected by time requested to				
		$I_{elab} = 1218$	calculate correct remaining Block size.				
		$I_{upd} = 42$					
		$I_{blksize} = (SIZe/7)^{*}348$					
End Block Request	T_{BDwEnd}	= 502	Elaboration of End SDO Block Download request				

SDO Upload Block

Parameters		Elaboration time	Note				
Initiate request	T _{BUpIn_min}	$= T_{elab} + T_{idx} + T_{sidx}$	Elaboration of Initiate Upload request. If Entry				
			size is greater than 889 byte (127 segment				
		T _{elab} = 1254	threshold). Block size is 127.				
	T _{BUpIn_max}	$= T_{elab} + T_{idx} + T_{sidx} +$	Elaboration of Initiate Upload request. If Entry				
		T _{blksize} ;	size is less than 889 byte (127 segment				
			threshold).				
		T _{elab} = 1254	Timing value is affected by time requested to				
		$T_{blksize} = (size/7)*348$	calculate and check correct Block size.				
Start request	T _{BUpStart}	187	Elaboration of Upload Start request				
Upload segment	T _{BUp}	$= T_{elab} + 7^*(T_{Srd} + T_{upd})$	Elaboration of 1 Upload segment (7 byte)				
request							
		T _{elab} = 195					
		$T_{upd} = 42$					
Block segment	T _{BUpLBlk}	346	Elaboration of a block reply. Last block sent.				
response	T _{BUpBlkR}	= T _{elab} + T _{blksize} ;	Elaboration of a block reply. Another block has				
			to be sent.				
		T _{elab} = 1304	Timing value is affected by time requested to				
		$T_{blksize} = (size/7)*348$	calculate and check correct remaining Block				
			size.				
End Block request	T _{BUpEnd}	222	Elaboration of End SDO Upload Block request				

13.1 TPDO Numerical Example

The critical tasks for the CCIPC core is the time needed to elaborate asynchronous and synchronous TPDOs. Every millisecond and every synchronous message received, the CCIPC core has to scan all the TPDOs supported in order to establish which TPDO has to be sent.

File name: CAS-CCIPC-DTS-0001.doc

The following paragraphs report numerical examples of the time needed to elaborate TPDOs for all the possible value of CCIPC Node supported (32,16,8,4,2,1).

The timing parameters (in milliseconds) reported are:

- 1. **Ta** that represents:
 - Elaboration time to elaborate one group of Asynchronous TPDOs when Inhibit time is 0 (inhibit time is 0 at start-up and is set when TPDO is sent for first time);
 - Elaboration time to elaborate one group of Synchronous TPDOs without send it (correct number of SYNCH message is not received);
- 2. **Tb** that represents:
 - Elaboration time to send one group of Asynchronous TPDO;
 - Elaboration time to send one group of Synchronous TPDOs;
- 3. **Tc** that represents:
 - Elaboration time of a single group of Asynchronous TPDOs when Inhibit time is not 0.

Each tables shows two timing values corresponding to the upper and lower frequency limits supported by CCIPC (16 and 10 MHz).

From the analysis of the results the following conclusions can be drawing:

- **Tb** decreases with the decrease of the number of TPDO per group, because the CCIPC has to send a smaller number of TPDO;
- Ta and Tc depend exclusively by number of TPDO supported by CCIPC;
- CCIPC is affected by elaboration delay when it's configured with 32 Nodes due to high number of TPDO to scan;

Moreover, since CCIPC executes a single service (TPDO, RPDO, SDO, SYNCH) at a time, the elaboration time for asynchronous timer-driven TPDO could be affected by further delay due to the waiting of the end of the current service. In this report, only asynchronous and synchronous TPDOs elaborations are activated.

13.1.1 CCIPC with 32 Node

The maximum number of TPDO supported is 128. The table reports the timings for 4 different TPDO configurations:

- Cfg-A: 128 asynchronous TPDOs with Inhibit and Event timer;
- Cfg-B: 64 asynchronous TPDOs with Inhibit and Event timer and 64 synchronous TPDOs;
- Cfg-C: 32 asynchronous TPDOs with Inhibit and Event timer and 96 synchronous TPDOs;
- Cfg-D: 32 asynchronous TPDOs with Inhibit and Event timer and 64 synchronous TPDOs and others disable.

For each configuration, the TPDOs have been divided in three set:

- SET#1: 8 groups of 16 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs);
- SET#2: 16 groups of 8 TPDOs Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs);
- SET#3: 32 groups of 4 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs).

		SET#1			SET#2			SET#3		
Configuration		Та	Tb	Тс	Та	Tb	Tc	Та	Tb	Тс
Cfg-A		2.09	2.88	2.4	2.09	2.47	2.4	2.09	2.2	2.4
Ū		3.34	4.6	3.84	3.34	3.95	3.84	3.34	3.52	3.84
Cfg-B	Asyn	1.54	2.33	1.69	1.54	1.92	1.69	1.54	1.70	1.69
		2.46	3.72	2.7	2.46	3.07	2.7	2.46	2.72	2.7
	Sync	1.07	1.98		1.07	1.50		1.07	1.29	
		1.71	3.16		1.71	2.4		1.71	2.06	
Cfg-C	Aavo	1.25	2.04	1.33	1.25	1.64	1.33	1.25	1.43	1.33
	Asyn	2	3.26	2.13	2	2.624	2.13	2	2.28	2.13

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

SITAEL	
--------	--

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 108 of 113

SET#1				SET#2		SET#3				
Configuration		Та	Tb	Тс	Та	Tb	Тс	Та	Tb	Тс
	Supp	1.16	2.03		1.16	1.63		1.16	1.39	
	Sync	1.85	3.24		1.85	2.6		1.85	2.22	
Cfg-D	Asyn	1.16	1.96	1.24	1.16	1.54	1.24	1.16	1.33	1.24
_		1.85	3.13	1.98	1.85	2.46	1.98	1.85	2.13	1.98
	Sync	0.99	1.68		0.99	1.46		0.99	1.21	
		1.58	2.68		1.58	2.33		1.58	1.93	

Tab. 13-1: TPDO Elaboration for 32 Node cou	∩t.
---	-----

13.1.2 CCIPC with 16 Node

The maximum number of TPDO supported is 64. The table reports the timings for 4 different TPDO configurations:

- Cfg-A: 64 asynchronous TPDOs with Inhibit and Event timer;
- Cfg-B: 32 asynchronous TPDOs with Inhibit and Event timer and 32 synchronous TPDOs;
- Cfg-C: 16 asynchronous TPDOs with Inhibit and Event timer and 48 synchronous TPDOs;
- Cfg-D: 16 asynchronous TPDOs with Inhibit and Event timer and 32 synchronous TPDOs and others disable.

For each configuration the TPDOs have been divided in three set:

- SET#1: 4 groups of 16 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs);
- SET#2: 8 groups of 8 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs);
- SET#3: 16 groups of 4 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs).

	SET#1			SET#2			SET#3			
Configuration		Та	Tb	Тс	Та	Tb	Тс	Та	Tb	Тс
Cfg-A		1.04	1.8	1.2	1.04	1.48	1.2	1.04	1.26	1.2
		1.664	2.88	1.92	1.664	2.36	1.92	1.664	2.01	1.92
	Acuro	0.77	1.6	0.84	0.77	1.2	0.84	0.77	0.94	0.84
Cfa P	ASyn	1.232	2.56	1.34	1.232	1.92	1.34	1.232	1.5	1.34
Cig-D	6,400	0.5	1.5		0.5	1.064		0.5	0.70	
	Sync	0.8	2.4		0.8	1.7		0.8	1.12	
	Asyn	0.63	1.46	0.67	0.63	1.06	0.67	0.63	0.85	0.67
Cfa C		1	2.33	1.07	1	1.69	1.07	1	1.36	1.07
Cig-C	Supp	0.58	1.34		0.58	1.01		0.58	0.81	
	Sync	0.92	2.14		0.92	1.61		0.92	1.29	
Cfg-D	Asyn	0.58	1.4	0.62	0.58	1.01	0.62	0.58	0.81	0.62
		0.92	2.24	0.99	0.92	1.61	0.99	0.92	1.29	0.99
	Sync	0.49	1.25		0.49	0.92		0.49	0.72	
		0.78	2		0.78	1.47		0.78	1.15	

13.1.3 CCIPC with 8 Node

The maximum number of TPDO supported is 32. The table reports the timings for 4 different TPDO configurations:

• Cfg-A: 32 asynchronous TPDOs with Inhibit and Event timer;

- Cfg-B: 16 asynchronous TPDOs with Inhibit and Event timer and 16 synchronous TPDOs;
- Cfg-C: 8 asynchronous TPDOs with Inhibit and Event timer and 24 synchronous TPDOs;
- Cfg-D: 8 asynchronous TPDOs with Inhibit and Event timer and 16 synchronous TPDOs and others disable.

For each configuration the TPDOs have been divided in three set:

- SET#1: 2 groups of 16 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs);
- SET#2: 4 groups of 8 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs);
- SET#3: 8 groups of 4 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs).

		SET#1			SET#2			SET#3		
Configuration		Та	Tb	Тс	Та	Tb	Тс	Та	Tb	Тс
Cfg-A		0.52	1.53	0.6	0.52	0.98	0.6	0.52	0.8	0.6
		0.83	2.44	0.96	0.83	1.56	0.96	0.83	1.28	0.96
	Aavo	0.39	1.39	0.42	0.39	0.84	0.42	0.39	0.66	0.42
Cfa P	ASyn	0.62	2.22	0.67	0.62	1.34	0.67	0.62	1.05	0.67
Сід-Б	Supe	0.27	1.09		0.27	0.68		0.27	0.46	
	Sync	0.43	1.74		0.43	1.08		0.43	0.73	
	Aavo				0.31	0.77	0.33	0.31	0.59	0.33
Cfa C	ASyn				0.49	1.23	0.52	0.49	0.94	0.52
Cig-C	Suma.				0.29	1.26		0.29	0.55	
	Sync				0.46	2.01		0.46	0.88	
Cfg-D	Asyn				0.29	0.75	0.31	0.29	0.57	0.31
_	-				0.46	1.2	0.51	0.46	0.91	0.51
	Sync				0.25	0.81		0.25	0.5	
					0.4	1.29		0.4	0.8	

Tab.	13-3:	TPDO	Elaboration	for 8	Node	count.
100.			Liaboration		11000	000111

13.1.4 CCIPC with 4 Node

The maximum number of TPDO supported is 16. The table reports the timings for 4 different TPDO configurations:

- Cfg-A: 16 asynchronous TPDOs with Inhibit and Event timer;
- Cfg-B: 8 asynchronous TPDOs with Inhibit and Event timer and 8 synchronous TPDOs;
- Cfg-C: 4 asynchronous TPDOs with Inhibit and Event timer and 12 synchronous TPDOs;
- Cfg-D: 4 asynchronous TPDOs with Inhibit and Event timer and 8 synchronous TPDOs and others disable.

For each configuration the TPDOs have been divided in three set:

- SET#1: 1 groups of 16 TPDO characterized by specific values of event and inhibit timers;
- SET#2: 2 groups of 8 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs);
- SET#3: 4 groups of 4 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs).

	SET#1			SET#2			SET#3		
Configuration	Та	Tb	Тс	Та	Tb	Тс	Та	Tb	Тс
Cfg-A	0.26	1.21	0.3	0.26	0.72	0.3	0.26	0.46	0.3
_	0.41	1.93	0.48	0.41	1.15	0.48	0.41	0.73	0.48

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

|--|

Doc.: CAS-CCIPC-DTS-0001 Issue: 17 Date: 10/02/2015 Page: 110 of 113

		SET#1			SET#2			SET#3		
Configuration		Та	Tb	Тс	Та	Tb	Tc	Та	Tb	Тс
	Δονσ				0.19	0.65	0.21	0.19	0.39	0.21
Cfa P	ASyli				0.3	1.04	0.33	0.3	0.62	0.33
Сіў-Б	Supp.				0.14	0.64		0.14	0.38	
	Sync				0.22	1.02		0.22	0.6	
	Acuro							0.16	0.36	0.17
Cfa C	Asyn							0.25	0.57	0.27
Cig-C	Supp.							0.15	0.41	
	Sync							0.24	0.65	
Cfg-D	Asyn							0.14	0.34	0.15
								0.22	0.54	0.24
	Sync							0.13	0.38	
								0.2	0.6	

Tab. 13-4: TPDO Elaboration for 32 Node count.

13.1.5 CCIPC with 2 Node

The maximum number of TPDO supported is 8. The table reports the timings for 2 different TPDO configurations:

- Cfg-A: 8 asynchronous TPDOs with Inhibit and Event timer;
- Cfg-B: 4 asynchronous TPDOs with Inhibit and Event timer and 4 synchronous TPDOs;

For each configuration the TPDOs have been divided in two set:

- SET#1: 1 groups of 8 TPDO characterized by specific values of event and inhibit timers;
- SET#2: 2 groups of 4 TPDOs. Each group is characterized by specific values for event and inhibit timers (asynchronous TPDOs), or transfer type (synchronous TPDOs).

		SET#1			SET#2		
Configuration		Та	Tb	Тс	Та	Tb	Тс
Cfg-A		0.13	0.49	0.15	0.13	0.32	0.15
-		0.2	0.78	0.24	0.2	0.51	0.24
Cfg-B	Asyn				0.096	0.29	0.11
					0.15	0.46	0.17
	Suno				0.072	0.24	
	Sync				1.15	0.38	

Tab. 13-5: TPDO Elaboration for 2 Node count.

13.1.6 CCIPC with 1 Node

The maximum number of TPDO supported is 4. The table reports the timings for 2 different TPDO configurations:

- Cfg-A: 4 asynchronous TPDOs with Inhibit and Event timer;
- Cfg-B: 2 asynchronous TPDOs with Inhibit and Event timer and 2 synchronous TPDOs;

		SET#1			
Configu	ration	Та	Tb	Тс	
Cfg-A		0.065	0.25	0.075	
-		0.1	0.4	0.12	
	A a) (12	0.048	0.14	0.053	
Сіў-Б	Asyn	0.076	0.22	0.084	

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

		SET#1			
Configuration		Та	Tb	Тс	
	Sync	0.039	0.01		
		0.062	0.02		

Tab. 13-6: TPDO Elaboration for 1 Node count.

File name: CAS-CCIPC-DTS-0001.doc

CCIPC - Data Sheet

14 CCIPC PORTABILITY

14.1 CAN Bus Controller

The CCIPC has been designed and in conjunction with the ESA HurriCANe core (v. 5.2.4). To insert this CAN Bus controller in the CCIPC database, all its source files have to be copied in the **CAN_CORE** directory, contained in **SRC** directory.

The CAN Bus Controller specific interface details are managed in the CCIPC_interface Block. This VHDL module has to be modified if a different controller than HurriCANe is used.

14.2 FPGA Technology

The CCIPC DataBase is equipped to support the following FPGA families:

- Microsemi (RT)AX family;
- Microsemi ProAsic family;
- Xilinx Virtex IV family
- Generic

The CCIPC Database is furnished with the memory model for the Generic technology. The selection of the target technology has to be specified in the CCIPC Configuration file (*CCIPCconf.vhd*). This file already supports the Microsemi and Xilinx options.

To insert other technology memory models follows these steps:

- 1) In SRC/LIBRARIES folder create a "MY_TECH" directory;
- Copy "my_technology_memory.vhd" file in "MY_TECH" directory. Note that the target memory model supported by CCIPC is 512x8 bit.
- Modify "CCIPCconf.vhd" file inserting a new technology constant. For example: constant my_technlogy: std_logic_vector(3 downto 0) := "1001";
- 4) Add the memory model instantiation to "tech_mem.vhd" file considering that CCIPC target memory (ram512x8) supports the following signals:

Signals	Direction	Function
Data[7:0]		Write bus
Q[7:0]	0	Read Bus
WAddress[8:0]	_	Write Address
RAddress[8:0]	_	Read Address
WE	_	Write Enable (active high)
RE	I	Read Enable (active high)
Clock		Clock

Tab. 14-1: CCIPC 512x8 target memory peripheral.

14.3 Rad-Hard Technique

The CCIPC has been developed considering Microsemi RTAX FPGAs as target technology.

Microsemi RTAX technology uses SEU-Hardened Registers avoiding the need to add Triple-Module Redundancy (TMR).

CCIPC uses FPGA on-chip RAM and it includes an Error Detection And Correction (EDAC) module in order to:

- detect and correct single-bit error;
- detect double-bit error

The equation below shows the Hamming code used during generation of EDAC bits (EB):

$$\begin{split} \mathsf{EB}(0) &:= \ D(0) \wedge D(1) \wedge D(2) \wedge D(4) \wedge D(5) \wedge D(7) \wedge D(10) \wedge D(11) \wedge D(13) \wedge D(16) \wedge D(20) \wedge D(21) \wedge \\ D(23) \wedge D(26) \wedge D(30) \ ; \end{split}$$

- $$\begin{split} \mathsf{EB}\;(1) &:= D(0) \wedge D(1) \wedge D(3) \wedge D(4) \wedge D(6) \wedge D(8) \wedge D(10) \wedge D(12) \wedge D(14) \wedge D(17) \wedge D(20) \wedge D(22) \wedge D(24) \wedge D(27) \wedge D(31)\;; \end{split}$$
- $$\begin{split} \mathsf{EB}\ (2) &:= D(0) \wedge D(2) \wedge D(3) \wedge D(5) \wedge D(6) \wedge D(9) \wedge D(11) \wedge D(12) \wedge D(15) \wedge D(18) \wedge D(21) \wedge D(22) \wedge D(25) \wedge D(28) \ ; \end{split}$$
- $$\begin{split} \mathsf{EB}\;(3) &:= D(1) \wedge D(2) \wedge D(3) \wedge D(7) \wedge D(8) \wedge D(9) \wedge D(13) \wedge D(14) \wedge D(15) \wedge D(19) \wedge D(23) \wedge D(24) \wedge D(25) \wedge D(29)\;; \end{split}$$
- $$\begin{split} \mathsf{EB}\ (4) &:= D(4) \wedge D(5) \wedge D(6) \wedge D(7) \wedge D(8) \wedge D(9) \wedge D(16) \wedge D(17) \wedge D(18) \wedge D(19) \wedge D(26) \wedge D(27) \wedge D(28) \wedge D(29) \ ; \end{split}$$
- $EB (5) := D(10) \wedge D(11) \wedge D(12) \wedge D(13) \wedge D(14) \wedge D(15) \wedge D(16) \wedge D(17) \wedge D(18) \wedge D(19) \wedge D(30) \wedge D(31) ;$
- $EB\ (6) := D(20) \wedge D(21) \wedge D(22) \wedge D(23) \wedge D(24) \wedge D(25) \wedge D(26) \wedge D(27) \wedge D(28) \wedge D(29) \wedge D(30) \wedge D(31)\ ;$

A dedicated register is used to control EDAC functionality.

Two dedicated flags are used to enable or disable EDAC protection on Memory or Queue modules:

- EDAC Enable on CCIPC memory device allows enabling or disabling EDAC protection on External and Internal memory devices;
- EDAC Enable on CCIPC queue device allows enabling or disabling EDAC protection on CCIPC internal message queues.

Bit Number	Description	Reset value
7-0	Single error event counter	0
8	Single error flag	0
9	Double error flag	0
10	EDAC Enable on CCIPC memory device	0
11	EDAC Enable on CCIPC queue device	0
15-12	Reserved	0
16	Single error mask	0
17	Double error mask	0

Tab. 14-2: EDAC error register.

The Single error flag is set when single error counter exceeds the threshold value of 255 errors. User can set the Single error counter value in order to control single error flag behaviour.

A write operation on the register forces both single and double error flag to reset value.

The EDAC function is disabled at start-up. User is in charge of enabling it after CCIPC initialization.

Since Double error detection represents a critical condition for the core because the management of wrong values can compromise the CCIPC behaviour, it is strictly recommended that user resets the CCIPC core if this error occurs.

END OF DOCUMENT